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Abstract

This thesis explores the design and use of custom-made VLSI hardware in the area of

database problems. Our effort differs from most previous ones in that we search for

structures and algorithms, directly implementable on silicon, for the solution of computation-

intensive database problems. The. types of target database systems include the general

database management systems and the design database systems. The thesis deals mainly

with database systems of the relational model. One common view concerning special-

purpose hardware usage is that it performs a specific task. The proposed device is not a

hardware solution to a specific problem, but provides a number of useful data structures and

basic operations. It can be used to improve the performance of any sequential algorithm

which makes extensive use of such data structures and basic operations. The design is

based on a few basic cells, interconnected together in the form of a complete binary tree. The

proposed device can handle all the basic relational operations: select, join, project, union,

and intersection. With a special-purpose device of limited size attached to a host, the overall

performance may ultimately be dictated by the I/0 between the two sites. The ideal special-

purpose device design is one that achieves a balance between computation and I/0. We

propose a model to study the I/0 complexity for sorting n numberswith any special-purpose

hardware device of size s, and show a lower bound result of an log n/log s). We present an

optimal design achieving this bound. An important finding is that for practical ranges on the

quantity of data to-be sorted, systolic sorting "devices of small sizes can beat fast sequential

sorting algorithms. .To evaluate the theme that a data structure supporting a few basic

operations can be useful, we examine a number of database problems all of which depend

heavily on sort, join, and search operations. One problem is the detection of three-

dimensional patterns of m points in a large structure of n points, with application in chemical

databases. We present a sequential algorithm with worst-case time complexity of

min{O(n2 ), O(n m3 )). With a uniform distribution of points in the pattern, the time complexity

Is at most O(m n). For the three-dimensional shape matching problem, where scale is also

allowed, we give an O(n2) solution. We also propose a method of packaging certain large tree

structures on chips. The packaging method requires only one type of fully utilized chip, which

is not pin-bound. The wire lengths connecting component chips are shorter than those using

the previously known layouts.

...... .. . ........ ... .. .... .. .
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Chapter 1

Int roduction

With recent technological advances in the VLSI circuitry, the chip capacity, or component

count on a chip, is increasing at an astonishing rate [66, 74. Both the opportunities and

challenges regarding effective use of VLSI are tremendous. Considerable interest has been

aroused in employing special-purpose hardware systems in application areas that demand

good response time and throughput. Examples of application areas already being considered

include signal and image processing, and graphics. This thesis explores the design and use

of custom-made VLSI hardware in the area of database problems. Search for hardware-

oriented solutions todatabase problems, in the context of design and implementation of the

so-called database machines, has been around for more than ten years. Our focus here,

however, differs from most previous efforts in that we search for structures and algorithms,

directly implementable on silicon, for the solution of computation-intensive database

problems. The proposed design is based on a few basic cells, interconnected in a simple and

regular way. By replicating the basic cells, whose design constitutes the main design effort, a

powerful special-purpose device can be obtained. This means that design costs, which

typically constitute the dominant cost in special-purpose VLSI hardware systems, can be

greatly reduced. The size of the custom-made device can be varied accordingly to match

various performance goals. The proposed device can be used in two ways. A device of

"large" size (to be made precise later) can handle all basic relational operations with

substantial performance improvement over conventional methods. It may constitute a viable

solution when chip capacity continues to increase. Another way is to use a device of "small"

size as a sorting engine. We shall show that such a device can provide significant speed-ups

in relation to fast sequential sorting algorithms. This solution is attractive because it

infplements an operation used in many database problems, and it can be implemented with
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current technology at a low cost. in either case the hardware is tailored to a specific

application area and can thus be simpler in design than a general-purpose off-the-shelf

computing device. The consequence is that we are likely to obtain a final product which is

both compact in silicon area and able to provide good perormance. Such a solution can thus

be cost effective.

1.1 Goal and Motivation

The goal of the present research work is to investigate the feasibility of employing special-

purpose VLSI hardware to solve compute-bound database problems. The types of target

database systems include the general database management systems, as well as the so-

called design database systems. The latter type of database system not only stores a model of

some complex reality and provides primitive accesses to it, but also supports its design.

Examples of design database systems include those used for architectural and mechanical

designs. The thesis deals mainly with database systems of the relational model1 .

By organizing 'information in database systems, integration is achieved. An integrated

database reduces the redundancy in the stored data. One important advantage is the sharing

of data and software for their manipulation and retrieval among different applications and new

ones to be developed. Because of these advantages, use of database systems has become

widespread. More recent database systems offer such attractive features as automatic

verification and. maintenance of semantic integrity, usage of views as abstraction and

authorization mechanisms, etc. The price for such features is the performance penalty a user

must often pay. What is allowed in a practical database system is often limited by

performance concerns. Operations such as the relational join and sort are computationally

expensive. An example of a costly query is the conjunctive query [16], shown to include a

great number of queries actually asked in practice. For example, the language Query-by-

Example [96] is based on a core of conjunctive queries. An optimal implementation of

conjunctive queries utilizes a great number of expensive relational joins. In design databases

1Appendix A contains a succinct introduction to the relational data model, as well as a brief discussion of the

storage structures used in implementations of relational database systems.
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such as those used for architectural and mechanical designs, costly spatial operations are

often required. In masonry designs using object grammars [70], for example, the application

of each-production rule requires the complete solution of a complex three-dimensional shape

matching problem. Details of this problem, as well as a number of other examples, will be

examined in Chapter 6.

Semantic integrity verification and maintenance in design databases is discussed in

[57,58]. Integrity constraints in design databases may be very complex. Lafue [58] proposes

delaying the maintenance of integrity until strictly necessary. As a consequence; violations of

integrity are temporarily tolerated as long as they are known. Such measures reflect the

performance concerns in design databases. Among the commercial database management

systems, some kind of semantic integrity checking and maintenance has been implemented in

System R [1, 2] and-INGRESS [90]. Though some simple integrity constraints are negligible in

cost, the user is warned against enforcing more complex controls unless he is willing to pay a

considerable cost. GLIDE [27] is an example of a design database with data and control

abstraction features of a high-level programming language. Some degree of semantic

integrity verification is supported.

Another costly operation is the materialization of views. A view is a relation derived from

existing relations, which may include base relations or derived relations. Nesting of views is

therefore possible. Views constitute a powerful abstraction mechanism, as well as an

authorization mechanism [29]. The creator of a view has the privileges to access, update

(under certain conditions), and destroy it. It is also possible to grant some of these privileges

to other users, and subsequently revoke the same privileges if-desired. Views can also be

used for another purpose. In order to enforce data independence and avoid redundancy,

several kinds of normal forms have been proposed [20, 28]. In such normal forms, relations

are broken into smaller parts which are then joined back together by the view mechanism.

Materializing views may be costly when complex relational operations are involved [901. In a

recent report where System R is evaluated, Astrahan et al. [2] mention a performance penalty

in executing very complex statements involving joins of several relations. They also point out

that this performance degradation must be traded off against the advantages of

normalization.
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These considerations serve as motivation for the development and usage of special-

purpose hardware to improve performance.

1.2 Methodology and Evaluation

A taxonomy and appraisal of database machine designs will be presented in Chapter 2.

Such a study is related to the thesis in two ways. The appraisal will enable us to spot the

strong and weak points of existing designs. For example, we will see that, with rare

exceptions, previous works do not address the important issue of problem decomposition,

that is, the partitioning of a large problem to be handled by a smaller piece of special-purpose

hardware. The proposed taxonomy will provide us with the nomenclature needed to describe

the context under which the proposed design stands. The taxonomy is based on several

dimensions. One dimension is whether special-purpose logic is applied to secondary memory

or primary memory, giving what we call logic-enhanced secondary storage or primary storage

designs, respectively. Most previous designs belong to the first category, which is especially

suitable for I/O-bound tasks. We shall focus mainly on designs that fall into the latter

category, aimed at compute-bound tasks.

We shall consider a different view of special-purpose hardware usage. One common view

is that a special-purpose device performs a well-defined and specific task such as filtering or

two-dimensional convolution. The systolic architecture [561 was proposed as a solution to

meet high-performance requirements for a compute-bound computational task that is regular,

i. e., where repetitive computations are performed on a large set of data. Such is the case for

example with respect to many signal and image processing computations. Nevertheless we

would like to exploit usage of some kind of special-purpose hardware to handle computations

that lack such regularity. The.device we propose is not a hardware solution to a specific

problem, but rather provides a number of useful data structures and basic operations. More

specifically, it can be viewed as a hardware version of a heap, priority queue, or a data

structure for searching in general. A sequential algorithm using complex data structures may

spend a great amount of time in maintaining them. Overheads in book-keeping and control

may be very expensive. This explains why certain asymptotically fast algorithms are not

usable in practice, when the constant hidden in the O-notation makes the algorithm
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inappropriate for the actual problem size. The same overheads in the hardware counterpart

are usually small. The performance of any sequential algorithm which makes extensive use of

such data structures and the supported basic operations will thus improve with the aid of

such a device. The price of this flexibility is that the device is not self-contained in that it

needs the supervision of some controller which may be part of the interface system or the

host.

One focus of paramount importance is the study of decomposition procedures by which a

large problem is partitioned into subproblems to be handled by a smaller special-purpose

device. As a result, it may be necessary to store and retrieve intermediate results before a

computation is complete. The overall performance may ultimately be dictated by the I/0

between the device and the host. We emphasize the importance of study of I/0 complexity to

achieve the optimal design where computation and I/0 are balanced.

As a means of evaluation, we will show that such a device is indeed useful in database

problems and cost effective. We anticipate here a summary of conclusions. We show that the

proposed device can handle all the basic relational operations: select, join, project, union,

and intersection. Furthermore, we show that a variety of problems are reducible to this set of

basic operations. These include two costly three-dimensional pattern or shape detection

problems and some others involving spatial operations. These problems arise in design

databases and some special database systems. One result that may be of practical

significance is a new method for packaging certain tree structures among chips. With regard

to sorting, an important finding is that for practical ranges on the quantity of data to be sorted,

systolic sorting devices of small sizes can beat fast sequential sorting algorithms.

1.3 Organization of the Thesis

Chapter 2 contains a taxonomy and appraisal of existing database machine designs.

Chapter 3 describes a tree-structured device to perform sorting and some basic relational

operations as project, join, union, etc. Partitioning mechanisms for handling large problems

whose size exceeds that of the primary memory are discussed. Chapter 4 contains some

implementation considerations. We present results on the packaging of large tree structures
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among chips, based on a layout result for a new structure called a linearized tree. We also

discuss the design of the basic cells of the device, and propose a simple instruction set.

Chapter 5 focuses on the importance of I/0 on the overall system performance where a

special-purpose device of limited size is used. Lower bound results on the I/0 complexity for

sorting are derived and an optimal design achieving this bound is shown. Chapter 6 examines

five different problems that arise in special database systems, including detection of patterns

of points and lines in three-space. The cnlutions are found to depend heavily on sort, join and

search. Finally, concluding remarks, a summary of main results and contributions, and

further works are presented in Chapter 7.
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ii.

Chapter 2

A Taxonomy and Appraisal of Database Machine Designs

The purpose of this chapter is twofold. We survey existing database machine designs to

identify their strengths and weaknesses, and propose a taxonomy which will then be used as

a context for our research. This chapter is organized as follows. First we characterize the

problem by identifying two bottlenecks. Then we describe the several dimensions the

taxonomy is based on. At the risk of oversimplification, the proposed taxonomy attempts to

group many seemingly different designs into a few categories by concentrating on their

similarities. The remainder of the chapter can then be viewed as a detailed presentation of

these categories, with a brief survey of previous database machine designs that fall into each

category. Part of the appraisal of database machines is based on a paper by Langdon [60].

2.1 Problem Characterization

S-comiar memo
Primary memory

Processing unit

I/O bottleneck von Neumann bottleneck

Figure 2-1: Two kinds of bottlenecks.

As shown in Figure 2-1, we can identify two potential bottlenecks, namely the I/O

bottleneck and the so-called von Neumann bottleneck. Memory hierarchies exist because of
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economic reasons. If primary memory were inexpensive, there would be no need for

secondary storage devices. Database files typically reside in the less expensive secondary

memory and only needed portions are brought into primary memory for processing. Among

the secondary storage devices, the magnetic disks have come into wide use. In moving-head

disks, a comb-like assembly contains the read/write heads. All tracks under the read/write

heads form a cylinder. To access data in a sector, the assembly first positions the read/write

heads over the cylinder containing the desired track and sector. The time to do this is called

the seek time. Having located the desired track, there is rotation delay for the needed sector

to come under the read/write head. This time is the latency time. Finally there is the

transmission time required to read or write a series of sectors. In fixed:head disks, every track

has its own read/write head. No mechanical movement of the head assembly is involved and

the seek time is essentially zero. Careful design of access paths and maintenance of

appropriate indices help in reducing the number of disk accesses. To eliminate the need for

access paths and indices, database machines with fast retrieval times have been proposed.

Most database machine designs use the logic-per-track approach 1841, allocating a read

head, some search logic, and write head to each data track of rotating storage devices. Data

read by the read head can be compared against some stored constant and modified, and

subsequently written back to the track during the same revolution. Such designs have

content addressability as their basic characteristic and can provide fast on-the-fly ietrteval.

In a compute-bound task a data element participates in many operations. The best place to

carry out such a task is inside the primary memory, because of its faster access speed. It was

observed in [56] that in a conventional von Neumann machine, each operation typically

fetches one or more operands from memory. Hence the amount of I/O (between the memory

and the central processing unit) is proportional to the number of operations to be performed

rather than the number of inputs required for the computation. The von Neumann bottleneck

is in fact an I/O bottleneck in lesser scale. To reduce traffic through this bottleneck, many

works have been done in the context of optimal register allocation or usage of cache memory.

Studies of such solutions abound in the literature and fall outside the scope of the present

work.
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2.2 Dimensions of the Space of Database Machine Designs

Database Machines

Location Logic -enhanced Logic-enhanced

of logic secondary storage primary storage

Allocation I FI
of logic Static Dynamic Static Dynamic

Degree
o logic Low High Low High Low High Low High

distribution I I I I I I I

L.g CASSM CAFS DBC Bentley, Kung Song

RAP DIRECT Song (gng)

RARES Shaw (PAM)

Chang Kung, Lehman

Shaw (SAM)

Leilich et al.

Figure 2-2: An overall framework.

The taxonomy is based on several dimensions. Depending on where special-purpose logic

is applied, we have logic-enhanced secondary or primary storage designs. Most previous

designs are variations of the first type. Another dimension along which designs can be

classified is the way logic is allocated to storage units, whether statically or dynamically. A

third dimension is the degree of distribution of logic among memory elements, defined in [83]

as the number of storage elements associated with each processing unit. Along this

dimension, we may have a wide spectrum of designs. High degree of logic distribution

signifies faster computation rate, and this should be such that a balance between

computation and data access rate is achieved. Classification of designs along this dimension

is also important since it is related to the cost of a physical implementation. As an example,

we can view a conventional von Neumann machine as a logic-enhanced primary storage

device occupying the lowest end of the logic distribution spectrum. The allocation of logic is

_____
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dynamic since one processing unit serves the entire memory. Figure 2-2 shows an overall

framework, illustrated with a few particular designs. The reader can refer to this figure when

reading the rest of this chapter. Its purpose is to illustrate the several categories and not to

show the exact positions of the various designs. No attempt should therefore be made to

derive quantitative conclusions. Only with a more specific definition of degree of logic

distribution and a more detailed analysis of the implementations involved can such positions

be made more precise.

2.3 Logic-enhanced Secondary Storage Designs

2.3.1 Uni-Search-Processor Scheme

Storage Units

Primary memory

Search Processor

0-

Figure 2-3: Uni-search-processor model.

One search processor is attached between the secondary storage devices and the primary

memory (Figure 2-3). Irrelevant data can be filtered out before they reach the primary

memory, and thereby reducing I/O traffic. Some early examples of database machines are of

this kind. This scheme occupies the low end of the logic distribution spectrum. The

allocation of logic is dynamic since one search processor serves the entire secondary

memory. An example is the Content Addressed File System, or CAFS [3,23).
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2.3.2 Multi-Search-Processor Scheme - Static Allocation

A storage unit considered in the following is usually a disk track, bubble memory, or

charge-coupled device. The static allocation scheme pre-allocates one search processor to

each storage unit, requiring as many search processors as there are storage units (see Figure

2-4). With such designs, the search time is typically tens of milliseconds. They occupy the

high end of the logic distribution spectrum.

Storage Units Search Processors

0-= 17 Primary memory

Figu re 2-4: Multi-search-processor (static allocation).

Among the designs which fall into this category, we cite the following. (Some of these

designs, conceived with static allocation in mind, are now shifting to the dynamic allocation

scheme, to be discussed shortly afterwards.) CASSM (91], or Content Addressed Segment

Sequential Memory, designed and with a prototype built at the University of Rorida, is one of

the earliest design efforts and thus has exercised considerable influence over other designs.

It is designed mainly to support the hierarchical database model. The CASSM system

consists of an array of cells each of which contains a processing element and a circular

Tremory element (a disk track). The processing element consists of a read head, comparison

and modify logic, and a write head. One difficulty of implementing logic-per-track devices is

the mechanical tolerance problem [60]. As bit densities achievable on the magnetic media

increases, the spacing between the read and write heads becomes tighter by the same

amount. CASSM has a read/modify/write capability using two physical disk tracks (A and B)

per logical track of storage. Data read from track A passes through the cell and is then written
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on track B. Next, data from track B is passed to track A, which permits any bit to be modified

yet employs a single head per track. Data sensed by the read head can be compared against

a constant value stored in the cell. CASSM has one comparator for data search. Intermediate

results are recorded as mark bits which can subsequently be used. A hardware prototype

with two cells was originally planned. What actually was built was a single-cell prototype

system. A fixed-head floppy disk was used. The system was built using 220 SSI circuits and

interfaced to a NOVA 800 computer.

RAP [791, or Relational Associative Processor, was designed and implemented at the

University of Toronto. It supports the relational data model. Like CASSM, an RAP cell has a

processing element and a rotating memory, which is a CCD track built from Intel's 16 Kbit

2416 components. One problem of using charge.coupled devices is their volatility. Since

they are susceptible to power disturbances, appropriate measures (such as stand-by power

sources) must be taken. In an RAP cell, three comparators are used. (Recall that a CASSM

cell has one.) The comparators are used in two instances. The first instance is the

qualification or selection of tuples. Up to three domains may be compared against constant

values stored in the cell. Each tuple has also a mark bit field to record temporary results

which can subsequently be used. A second instance is to compare single domain values

against three comparands. It may thus require less number of revolutions as compared to

CASSM. A prototype system, called RAP.2, of two cells was built in 1977. In this prototype

system, each record was limited to 255 items whose length could only be 1, 2, or 4 bytes of

data. In the planned RAP.3 this length will be arbitrary. In RAP.2 each cell can store data (or

part of the data) belonging to a single relation. This means that while a large relation can be

allocated to several cells, an entire cell is needed to store a small relation. This restriction will

be removed in RAP.3. Regarding the performance of RAP.2, it is reported that gains range

from one to three orders of magnitude in query execution speed over conventional systems.

Chang (17] proposes slightly modified major/minor loop bubble chips to accommodate

storage and access for relational databases. While the data tracks of the logic-per-track disk

files are difficult to synchronize, an important advantage of bubble-like devices is the bit-by-bit

synchronization. Bubble technology, however, suffers from a bit rate problem, that is, the

data transfer rate may be too slow to be competitive with other rotating storage devices.
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RARES (681, also designed to support the relational model, differs from others mainly in that

tuples are stored across the tracks of the head-per-track disk storage. A system of up to 14

search processors has been designed and implemented by Leilich et al. [63]. With

considerably less logic distribution than the other designs in the static allocation category is

the design by Lang et a]. [59], in which a processor is associated with each direct access

storage device, instead of with each storage track. A very recent effort is the investigation of

tools for generating language transducers [321. The research involves the construction and

evaluation of VLSI circuits using language transducers for several problems. One of the

problems is the construction of a data filter for logic-per-track database machines.

In the static allocation scheme, each storage unit has its own private search processor and

it does not matter in which storage units a file should reside. Therefore storage organization

is quite simple. The main problem, of course, is the waste of too much potential resource.

The global database may contain information for many different users and applications. In

processing one specific query, however, the actual load (i.e., the amount of data needed for

the processing) may well constitute a tiny fraction of the whole database. Providing logic to

all disk tracks of the entire database is analogous to a memory management system in which

enough physical memory is provided to hold all programs ever written by all the users of a

given installation.

2.3.3 Multi-Search-Processor Scheme - Dynamic Allocation

Still using our analogy with a memory management system, a virtual memory system

allocates physical memory dynamically to segments of programs only when their presence in

the main store is required for execution. The amount of physical memory can thus be

significantly less than the total program space. Similarly, in the dynamic allocation scheme, a

number of search processors are allocated dynamically to those storage units containing

information to be processed. The amount of search logic is therefore distributed to the entire

database and hence will occupy the lesser end of the logic distribution spectrum as compared

to those with static allocation. Depending on how search processors are connected to

storage units, we have many variations of this scheme. Two of these, which correspond to

real database machine designs, will be examined.
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2.3.3.1 Complete-BipartIte-Graph Connection

PrimarV

Memor

Search Processors

Storage Units

Figure 2-5: Complete-bipartite-graph connection.

!n this scheme each search processor is connected to every storage unit of the database,

as depicted in Figure 2-5. It works in the following manner. Each storage unit keeps

broadcasting its contents to all the search processors. An individual search processor can

choose to listen to one of the storage units and ignore the others. We have thus a very

flexible connection. Any search processor can operate on any storage unit. Furthermore,

several search processors can operate independently on the same storage unit, as long as

they do not contend (for instance, they should not all try to update at the same time). This

connection also allows a multi.user system in which some search processors may be

operating to answer one user's queries, while some other search processors are working on

another user's queries. Flexibility is of course obtained at the crnc of the number of

connections and the more complex control mechanism of the search processors. DeWitt

[251, at the University of Wisconsin, Madison, proposes a design of a system called DIRECT

which uses essentially this connection. In the proposed configuration, it will have eight LSI.

11/03 search processors and 32 storage units each composed of a 16K byte CCD memory.
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2.3.3.2 Partitioned-Sto rage.-Units Connection

In this connection scheme, f we have t search processors and n storage units (typically,

t < n), then all the storage units will be divided into n/t partitions, each with t storage units.

The t search processors can be connected to the storage units of one partition, but not to

storage units of different partitions. Data residing in one partition can be examined by the

search processors in essentially one disk revolution time (assuming a storage unit to be a disk

track). Therefore, if related data are clustered into the same partition, they can be searched

very quickly. We thus see tha! this scheme can provide the same performance as the static

allocation scheme, given that we have enough search processors (t is sufficiently large) and

related data are properly clustered.

Gd o k drivere Di s

dik drie r i

disk drives c

Figu re 2-6: Partitioned-storage-units connection.

The Data Base Computer (5], or DBC, designed by a group headed by D. Hsiao at Ohio

State University, fits into this model. The DBC design uses moving-head disks as storage
devices, the only requirement being the parallel read-out capability of the t tracks of one disk

cylinder. The set of disk drives is divided into 8- 16 dives for access and control purposes

I III 1 II I I [ I I= ,, , , . .. . . :
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(Figure 2-6). Each group is controlled by a disk drive controller. A drive selector determines a

particular disk drive controller which, in turn, determines the disk drive whose Jata are to be

transferred. Data read out from one cylinder are then fed into t search processors. The DBC

design was conceived with dynamic allocation approach in mind, and has provided extensive

literature on such issues as data clustering and security checks [6].

2.3.4 Appraisal

Logic-enhanced secondary storage designs are based on the logic-per-track philosophy

and have one common goal: that of providing efficient on-the-fly search of massive amounts

of data in one or a few disk rotations. They constitute promising approaches to the important

selection operation. Some other frequently used database operations, however, require not

only knowledge of the values of individual data items, but depend on some kind of interaction

among data items. The relational join between two relations of size n each, for example,

requires 0(n ) comparisons in its straightforward implementation. With a secondary

associative storage device, it can be implemented as follows. For each tuple of one relation,

we extract the specific field over which the join is being performed. Then in one revolution

time we compare it with the corresponding field of all the tuples of the second relation.

Therefore the join operation can in principle be obtained in approximately 0(n) revolutions,

where n is the number of tuples of the first relation. While this linear performance result might

seem quite acceptable at a first sight, we have to keep in mind that one revolution time is on

the order of tens of milliseconds. Therefore this mechanism is acceptable as long as we have

a small number of argument tuples. For a concrete example, we cite the design of RAP in

which the join is performed in a way very similar to the one described. Table 2-1 reproduces a

summary of some results of a live demonstration of the RAP.2 prototype hardware [79]. The

execution time for the third query, containing a join operation, is considerably greater than

those of the other two.

Some recent designs combine the secondary associative storage devices with a logic-

enhanced primary memory. In such designs, the secondary associative memory plays an

Important role in the case when the problem size is too large to be handled entirely in the

primary memory. Appropriate partitions can be retrieved by the logic-enhanced secondary
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Main operations # rotations Time Tuples retrieved

select, average, sum 13 rotations 18/60 11 tuples

select, updates 5 rotations 8/60 s Q tuples

select, join 63 rotations 82/60 a 7 tuples

Table 2-1: Summary of demonstration results.

storage devices and delivered to the primary store. For example, Lin [69] discusses the usage

of associative secondary storage to aid in external sorting. Sorting is also discussed in the

article on RARES [68]. The method is based on the knowledge of a histogram concerning the

key values. By using content. addressability of the secondary store, the appropriate partition

is brought into the main memory which is assumed to be fast enough to produce sorted

sequences in a pipelined fashion as a new partition is being retrieved. A more detailed

discussion on these ideas is found at the end of Chapter 3.

2.4 Logic-enhanced Primary Storage Designs

Depending on the degree of logic distribution, several kinds of logic-enhanced primary

storage designs can be considered. At the low end of the spectrum is the attachment of

special-purpose hardware of limited size to a conventional passive memory. In such designs,

logic is allocated dynamically to the entire memory. At the other end of the spectrum are the

designs using the so-called smart memory (which we will refer to as logic-per-datum designs),

in which there is a commingling of logic and memory elements in a fine grain. Such designs

are of very high performance and constitute a departure from the von Neumann architecture.

fhe remainder of this section will survey the various logic-enhanced primary storage designs.
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2.4.1 The Post-Processors of The DBC Design

In the BC design mentioned earlier, functions such as sorting of retrieved records,

relational join operations on two sets of records retrieved from secondary memory, and the

set functions as maxima and average, are all handled by what is known as the post-

processors. Recall that search logic is allocated dynamically to the secondary memory so

that a cylinder of data can be content searched in essentially one disk rotation. The retrieved

data are fed, in a pipelined fashion, to the post-processors. The post-processing functions

are presented in a number of reports describing the sort operation (40] and the join operation

[39, 41]. In particular the last report also contains a comparison of the DBC join method with

other proposed methods. The post-processing functions are performed by a multiprocessor

system consisting of a number of linearly connected processors each with private memory. In

an earlier description [39] they share an associative memory for storage and fast retrieval of

join attribute values. For each unique join attribute value, the associative memory provides an

integer index, which is then used by the processors to obtain a memory location by means of

hashing. This first design has the drawback of not being easily hardware-extensible. All

processors share the same associative memory which will become a bottleneck when the

number of processors increases. A new design described in [41] distributes the associative

memory among all the processors, such that each will contain a fraction of the original

associative memory. In either design, a very strong assumption is that all the required tuples

can fit into the memories of the multiprocessor system. Its practical use may depend on the

ease of partitioning large problems.

2.4.2 The Hierarchical Associative Architecture

A hierarchical associative architecture has been proposed by Shaw [83] for the efficient

evaluation of relational primitives such as join, project, and select. It consists of a hierarchy of

associative storage devices under the control of a general-purpose processor. At the bottom

of the hierarchy is a secondary associative memory (SAM), which may be implemented using

parallel logic-per-track disks, as in CASSM, RAP or RARES. At the top of the hierarchy is a

primary associative memory, (PAM), capable of fast content-based searches. Complex

relational primitives such as the join operation on two relations are evaluated in the primary
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associative memory, with the assistance of the secondary associative memory. Shaw

considers the important case of handling large problems whose size exceeds that of the

primary associative memory. He distinguishes two kinds of evaluations, namely, internal

evaluation where the argument relations can be fit entirely into the primary associative

memory, and external evaluation where the relations exceed its capacity. Shaw shows that

when argument relations are large, the time required for evaluation of complex primitives with

the hierarchical associative architecture represents a substantial improvement over the

results attainable using only secondary associative storage devices.

2.4.3 Systolic Priority Queues

The systolic array approach has been proposed as a solution to offload costly

computations. Systolic algorithms have been presented for matrix computations [51], signal

and image processing [52, 53, 55], pattern matching [31], transitive closure and dynamic

programming [49], and many others. (For a more complete list of systolic algorithms, see [54];

for a discussion on the philosophy of the systolic architecture, see [56].) One systolic design

especially useful in database applications is the priority queue proposed by Kung and

Leiserson [64]. A linear array of cells is used to store a collection of elements with the

possible operations of insertion, deletion and minimum extraction. (Fisher [30] presents

designs of systolic arrays for computing running order statistics where ranks other than the

minimum and input spaces of higher dimensions are considered.) In addition to storage,

some comparison logic is provided at each cell. A sequence of the above operations can be

executed concurrently in a pipelined fashion, in such a way that the response time is a

constant, independent of the length of the array. A priority queue can also be implemented

with a hardware heap in a straightforward way as we will show in Section 3.3. Notice that a

systolic priority queue, whether implemented as a linear array or a heap, is a logic-per-datum

device and, as such, occupies the high end of the logic distribution spectrum. However, if

such a device of limited size is used to aid in the internal sorting of a much larger collection of

numbers, then the degree of logic distribution will be considerably less. Hence, depending on

the size of a systolic device and the problem size it is able to handle, its usage may be

economically infeasible, or perfectly viable and justifiable. (Internal sorting with the aid of

systolic devices wiN be treated in more detail in Chapter 5.)
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2.4.4 The Systolic Arrays for Relational Operators

Kung and Lehman [501 consider the use of a large number of simple processors connected

in a linear array for the handling of relational operators. They describe, among others, arrays

for performing intersection (which can also be used for projection with duplicate removal) and

join of two relations. A single database transaction may consist of a number of relational

operations. Therefore to process all the operations required in one or more transactions, an

integrated system containing several systolic arrays is needed. A crossbar scheme

connecting the memories holding required data and the special-purpose systolic arrays is

proposed.

In a recent work by Kim, Kuck, and Gajski [43], a bit-serial/tuple-parallel relational query

processor is proposed. The scope of the study is limited to designing a query processor that

will efficiently process data already loaded into the primary memory. As in the case of the

systolic arrays of Kung and Lehman, the proposed query processor is designed with the view

toward VLSI implementation.

2.4.5 The Tree Machine

A logic-per-datum design consisting of a binary tree of cells has been proposed by Bentley

and Kung [9] (and independently by Browning [14, 15]). The internal cells of the binary tree

can propagate information to, as well as combine the information of the descendant cells

(such as taking the logical and, or select the minimum, etc.). Data elements reside in the leaf

cells which are provided with logic to carry out a limited repertoire of instructions. Such a

structure is especially suitable for different kinds of searching problems, because of the

logarithmic path between the root cell and any leaf cell. It has been extended [85] to handle

the sort operation, and relational operations as project, join, union, etc. Details are found in

Chapter 3. Such a design is of high performance and occupies the high end of the logic

distribution spectrum (see Figure 2-2 under the branch of static allocation). The same device,

of a small capacity, can be allocated to serve a much larger memory, thereby occupying the

lesser end of the spectrum (Figure 2-2 under the branch of dynamic allocation). Such a

device wigibe discussed in Chapter 5.
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2.4.6 Appraisal

Logic-enhanced primary memory designs are useful for compute-bound tasks where a

same datum participates in many operations. On the other hand, I/O-bound tasks such as

selection are better handled by logic-enhanced secondary storage devices, before the data

even get to the primary memory. Thebest architecture is perhaps a hierarchy containing both

kinds of devices. Logic-enhanced secondary devices may be used to filter out the irrelevant

data, and more complex operations on the selected ones are processed in the logic-

enhanced primary memory. Designs where logic is allocated dynamically to the entire

memory is usually economical to implement but require careful study of the issue of problem

partitioning, that is, how to decompose a large problem such that it can be handled by a

special-purpose device of smaller size. The logic-per-datum designs can provide very high

performance and constitute a departure from the von Neumann architecture. Their

implementation cost may however limit their usage to very specialized applications, where fast

response time and throughput are required, e.g. on-line bank-teller systems that support a

huge number of simultaneous transactions [62].
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Chapter 3

The Tree Machine

In this chapter we describe a tree-structured machine for the handling of relational

operations, as well as the important sorting operation. A novel space allocation scheme for

the tree machine, as well as insertion and deletion procedures, will be described. Many of the

sections presented here are contained in [85], which however does not consider problem

partitioning.

In database applications, queries typically require the execution of a sequence of database

operations before the answer is obtained. One such sequence might be the selection of the

required "tuples, the joining of the selected tuples of two relations over some attribute,

followed by the projection of the result relation to extract the desired columns and the final

output of the result with duplicate-removal. It is therefore desirable to have a single special-

purpose device which can provide efficient solution to all basic database operations. For this

purpose we have chosen the tree machine of Bentley and Kung [9] and attempted to extend it

to handle other basic database operations. Tree-structured machines have been proposed as

general-purpose computing devices by Berkling [11], Browning [14, 15], Mago [72], Sequin,

Despain, and Patterson [80] and Wilner [95]. Hollaar [351. presents a tree-structured design

for merging sorted lists.

This chapter is organized as follows. First we characterize the system configuration and

present a general description of the tree machine. We shall present a new space allocation

scheme and comment on its practical usage. We then consider some basic database

operations, including select, sort, project, join, union, and intersection. Finally we discuss

decomposition strategies to retrieve to primary memory appropriate partitions of a large

argument set stored in secondary memory.



PAGE 21 CHAPTER 3 THE TREE MACHINE

3.1 System Configuration

Conventional

Secondary Machine Te

Memory (Primar memorMahn

Figure 3-1: System configuration.

We distinguish the following hierarchy of memories (Figure 3-1): secondary memory,

primary memory, and the special-purpose device. Under this hierarchy, two levels of problem

decomposition need to be considered. On the first level a large problem exceeding the

primary memory capacity has to be decomposed and appropriate partitions brought to the

primary memory to be processed. Two decomposition schemes will be discussed at the end

of this chapter. This level of decomposition can be carried out with the aid of some kind of

secondary associative storage devices, as discussed in the previous chapter. A second level

of decomposition is the partitioning of data elements inside the primary memory to be handled

by a tree machine of smaller size. This will be discussed in Chapter 5. Throughout this

chapter, however, we assume a "large" tree machine in the sense that every tuple stored in

the primary memory has an alternate representation (such as its memory location and part of

the complete tuple) stored in a node of the tree machine.

3.2 General Description of the Tree Machine

The tree machine has three kinds of nodes (Figure 3-2): O-nodes, 0-nodes, and A-nodes.

Each one of a collection of data elements resides in a 03-node, which is provided with some

logic to carry out a limited repertoire of instructions. The O-nodes broadcast streams of

instructions and/or data to the 0-nodes where they are executed in parallel. The 03-nodes

compute results which are then combined by the A-nodes to produce the final result. For

example, selection of data satisfying a conjunction of conditions can be, performed by

broadcasting the conditions to the 0-nodes which then decide which ones are to be selected.

The A-nodes then take the selected results and output them through the root A-node. The

.. .- -. ..p. . . . . . .1 " 1 1 1 . . . . .. i i I I l ... . . .



PAGE 29 SECTION 3.2 GENERAL DESCRIPTION OF THE TREE MACHINE

input root node

output root node

Figure 3-2: The tree machine.

structure of the tree machine is that of two complete binary trees, one being the mirror image

of the other. In Chapter 4 we shall show that it can be nicely laid out on chips which, in turn,

can be compactly laid out on circuit boards.

3.2.1 A New Space Allocation Scheme

We now review the insertion and deletion algorithns mentioned in [9], and propose a new

space allocation scheme, along with the associated insertion and deletion procedures.

Consider the task of maintaining a collection of elements in the 03-nodes of the tree machine,

with the possible operations of inserting new elements and deleting existing ones. One way of

doing insertion is to maintain a count in each of the O-nodes, specifying the number of free

0'-nodes which are its descendants. Each time a new element is to be inserted, a O-node will

pass on the element to the offspring which has free 0-nodes below (choosing an arbitrary

one if both are eligible). Then it will update its own count by decrementing it by one.

Similarly, when an element contained in a 0t-node is deleted, some of the O-nodes need to

have their counts updated. More specifically, these are all the O-nodes which lie on the path

from the input root node to the particular 0t-node where deletion has occurred. This can be

done by proceeding backwards from the deleted node to the input root node, adjusting the

counts on the way up. O(log n) steps are therefore necessary to adjust the counts, where n is

the total number of 0t-nodes of the tree. This scheme requires storage for the count, as well

a§ the associated logic needed for its updates, in each of the O-nodes. Since counts need to

L. t
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be adjusted after a deletion, it makes pipelining an arbitrary sequence of insertions and

deletions more difficult. Consider for example the tree with all the 0-nodes already full, and

the sequence of alternate deletes and inserts, as follows:

delete, insert, delete, insert,....

After each deletion, O(Iog n) steps are needed to adjust the counts. The time to execute a

sequence of m operations such as those above will be O(m log n).

We wish to design new insertion and deletion algorithms with the following two objectives:

* Arbitrary sequences of insertions and deletions can be easily pipelined.

* No counts or associated logic for their updates are to be maintained in the 0-
nodes.

We have found a way to achieve the above if the following assumptions are made:

" A single count is kept in the tree controller (the interface controller of the tree
machine).

" For each delete command issued by the tree controller, there exists one and only
one item in.a O-node which will be deleted.

Maintaining one single count in the tree controller surely poses no problem, as compared

to the n - 1 counts in the original scheme. The second restriction with respect to deletion will

be discussed later.

What we are facing is a problem of dynamic allocation of free 0-nodes. We wish to

maintain a pool of such nodes. For each insert operation, we remove one free O-node from

this pool; for each delete operation, we return the garbage node to the pool to be re-cycled.

Consider each 0-node as containing storage for two fields, Node.FreePosition and

Node.Content. If a 0-node is free, then Node.FreePosition contains an integer from 0 to n-1,

where n is the total number of 0-nodes in the tree. Also, for simplicity of notation, we write

Node, for the 0-node whose FreePosition field contains i, 0 _ i < n-1. If a 0-node is

occupied then its FreePosition contains A. Node.Content is the value of the item 3t. ,d in the

0-node which, for simplicity, will be assumed to be an integer.

If the tree is empty (i.e., it stores the empty collection), we assume that the free D-nodes of
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SFirstFree

Figure 3-3: An empty tree.

the tree are Nodeo , Node1 , Node 2 .... Noden-1, in any order. (See Figure 3-3, where the

bottom half of the tree machine is omitted and only the FreePosition field is shown.) We also

assume that the tree controller maintains an integer count called FirstFree, such that the free

0-nodes are NodeFirstFree, NodeFrstFree + 1. Noden., . FirstFree contains 0 if the tree is

empty and contains n if the tree is full.

3.2.1.1 Insertion

To insert an element X, the tree controller will generate an insert instruction which has two

parts, namely, Instruction.FreePosition and Instruction.Content. Instruction.FreePosition will

indicate which 0-node is to be removed from the pool of free 0-nodes. The tree controller

assigns NodeFirstFree to be that node. Instruction.Content contains the value to be inserted.

This is shown as follows.

Instruction.FreePosition -- FirstFree;
Instruction.Content - X;
FirstFree <-- FirstFree + 1

Each 0-node broadcasts the instruction to its two offspring. Simultaneously, each 0-node

will try to see if it has been selected as the node to receive the element being inserted.

Exactly one such node will be found and this will mark itself as occupied after redefining its

Content field. This is shown as follows. (Figure 3-4 shows the tree after 6 elements have been

inserted to an initially empty one.)
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if
Node.FreePosition = Instruction.FreePosition

then
Node.Content -- Instruction.Content;
Node.FreePosition - A

fi

( Firstree

Figure 3-4: After six insertions (A denotes an occupied node).

3.2.1.2 Deletion

We consider deletion of an element from the tree based on the content of that element.

Suppose that we wish to delete the element X from the tree. By the assumption made before,

one and only one 0-node will be freed whenever a delete command is issued. This means

that the tree controller will know beforehand that one of the originally occupied 0-nodes will

be able to return to the pool of free. 0'-nodes, even though it does not know which one.

Therefore, the delete instruction issued by the controller will contain not only the content X to

guide the deletion, but also the value that should be stored into the FreePosition field of the

node to be freed.

FirstFree 4- FirstFree - 1;
Instruction.FreePosition ,- FirstFree;
Instruction.Content - X

t.

Again the O-nodes merely broadcast the delete instruction to the 0-nodes. Each 0-node

will attempt to match its content with that in the instruction. Only one will find a match and

that one will be immediately returned to the free pool by redefining its FreePosition field. This

is shown as follows. (Figure 3-5 shows what remains after two deletions have been made to

the example illustrated by Figure 3-4.)
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if
Node.Content = Instruction.Content

then
Node.FreePosition - Instruction.FreePosition;
Node.Content -- A

fi

Here we have used A to indicate the null content. Note that the functions performed by the

0-node in the insert and delete commands are symmetrical. We obtain one from the other by

merely interchanging the words Content and FreePosition. Based on this, we now give a

simpler version of these algorithms.

Figure 3-5: After two deletions (A denotes an occupied node).

3.2.1.3 A Simpler Version

Notice that Node.FreePosition and Node.Content are never simultaneously defined;

whenever one is defined, the other is A. Therefore they can occupy the same storage in a 0.

node, which we now call Node.Storage (Figure 3-6). If the first bit of Node.Storage is 0 or 1,

then the remaining bits contain a FreePosition or a Content; respectively.

Node.Storage

remainIng bit

Figu re 3-6: A node storage.

The insert and delete instructions now have a unique format, as shown in Figure 3-7. The
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left bit indicates whether the remaining bits of the left part is a FreePosition or a Content,

using the same convention established before. Similarly, the same applies to the right bit

relative to the right part. In an insert instruction, we define the left bit = 0 and the right bit =

1; in a delete instruction, we define the left bit = 1 and the right bit = 0. In fact, only one of

these two bits is needed, since one is always the complement of the other.

left part right part

left right
bit bit

Figure 3-7: Insert and delete instruction formats.

The interesting thing to observe is that now the 0-node does not have to distinguish an

insertion from a deletion, since it will always proceed in the same way in both cases, as

follows.

if
Node.Storage = left part

then
Node.Storage 4- right part

f|

We have simplified the above presentation by assuming the item residing in a O-node to be

an integer. The proposed algorithms can readily be adapted to handle more general cases

with minor modifications.

3.2.1.4 Comments on the Algorithms

In the original insertion scheme mentioned at the beginning of this section, the element to

be inserted is passed down the tree through a path of O-nodes until a free O-node is reached.

The selection of this path is guided by the 0-nodes which use their own count information as

well as those of their two offspring. In the new scheme, the element being inserted does not

follow any particular path, but is merely broadcast to all the 0'-nodes. It takes advantage of
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the content addressability of the tree machine to do the selection of the free 0-node. Also, in

the original deletion scheme, log n counts in the O-nodes need to be adjusted. Since we do

not know which counts are to be incremented until the deletion is done, pipelining was not so

easy to achieve. Here we have only two values to be adjusted, namely, those of FirstFree and

of the FreePosition field of the deleted node. The interesting thing is that both values can be

determined at the time the delete command is issued by the tree controller. Pipelining

arbitrary sequences of deletes and inserts presents no problem at all. In some sense, we have

factored out the counts and logic from the O-nodes to the tree controller, thereby reducing

the space needed for its implementation. In VLSI designs, there is often a trade-off between

space and time. In this case, however, the new space allocation scheme has allowed us to

reduce space requirements and at the same time achieve better performance. We have,

however, traded off generality for these improvements. A discussion of the restrictions of the

algorithms now follows.

3.2.1.5 Comments on the Restrictions

The scheme is based on the assumption that, for each delete command, there is one and

only one element qualified for deletion. Two situations may violate this assumption. In the

following we discuss each case as well as the problem it causes.

e A delete commend finds many elements to be deleted. (Notice this is never the
case if deletion is based on a primary key, i.e., a field with values that uniquely
identify the elements of the collection.) One delete command may cause more
than one 0-node to be deleted and, consequently, all such nodes will have the
same value for their FreePosition fields. As a result, the next insert operation will
insert the same information at more than one 0'-node. Depending on the type of
transactions we are working on, this may cause no damage at all, but some waste
of space. Therefore one solution may be perhaps to do nothing to prevent its
occurrence, and perform a remove-duplicates operation at the moment the data
elements are unloaded from the device. (Three solutions for removing duplicates
are given in Section 3.3.4.)

e A delete command finds no element qualified for deletion. This may cause a more
serious problem. The tree controller, in issuing a delete command, foresees the
freeing of an occupied 0t-node and supplies a FreePosition for this purpose. A
subsequent insert operation may be issued carrying this FreePosition expecting
to find the free 0-node where insertion is to occur. Instead. no such free node
exists and the failure of the insert operation may cause erroneous results in a

* subsequent operation, say a membership testing or deletion operation. One
solution is to make insert and delete work at different "ends" of the free pool.
This of course will complicate the function of the tree controller.
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A general and straightforward solution requires some additional processing before a delete

command is issued. First those elements qualified for deletion are selected and deletion

proceeds by using fields which uniquely identify them (such as a primary key, or an absolute

address of the 0'-node). With this, we lose the pipelining advantage offered by the new

scheme which, nevertheless, is still interesting because less storage and logic are required in

the O-nodes. There are many examples of applications in which deletion is performed on

previously inserted records. In an inventory control application, a record indicating an order

is inserted and later needs to be removed when the ordered merchandise arrives. In a design

database where pairwise intersections of rectangles are to be reported (Section 6.3), a record

is inserted when a scan line touches the left edge of a rectangle, and subsequently has to be

removed when the corresponding right edge is scanned. In such cases, the presence of the

record to be deleted is certain. Furthermore, if deletion is based on a primary key, then the

assumptions in question are met and the proposed scheme can be applied to its full

advantage.

3.2.2 Disciplining the Data Flow

In operations where only one output is involved, new commands can be issued to the tree

machine while the results are being handled at the A-nodes to be output. In other words,

pipelining is easily achieved. In some operations, however, many results are produced in the

0'-nodes. These will traverse through the A-nodes until they reach the output root node.

Given the funneling nature of the output binary tree (i.e., the bottom part of the tree machine),

the A-nodes must cooperate among themselves in order to produce an orderly evacuation of

the many results. We say that a A-node is ready to accept data if its storage is empty. It will

then examine its two offspring and take the contents of a non-empty one. If both offspring

have information to be transmitted, then it will select one according to some fixed rule (such

as always picking the leftmost, or selecting the one with minimum value on some specified

key). Another form of disciplining the data flow in the A-nodes involves the exchange of

information between a A-node and its offspring A-nodes, to be described in Section 3.3.3.

Multiple results produced in 0'-nodes may have to be retained for a while before they are

accepted by the A-nodes. In order to protect these results from being destroyed by the
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incoming stream of instructions or data, the broadcasting of information in the 0-nodes

cannot be done in a lock-step fashion. Rather, some request/acknowledge signaling

convention is used. Each 0-node ready to accept data sends a request signal to its parent

node and goes into a wait state. Each 0-node with data to be broadcast sends the data and

an acknowledge signal after it has received the requests from both offspring nodes. Section

4.2.1 contains more details. With regard to such rules, the following observations can be

made.

3.2.2.1 Observation 1

If any result formed in a 0.node is always readily taken out without delay, then

broadcasting items a1 , a2, a3 ' ... down the tree will result in alternate empty layers of 0-nodes.

With a tree machine of n 0-nodes, (log n)/2. layers of 0-nodes will be empty, as shown in

Figure 3-8. Also, it takes log n steps for any item a, (counted from the instant it enters the

input root node) to reach a r-node.

Figure 3-8: Alternate empty layers of 0-nodes.
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3.2.2.2 Observation 2

Consider a situation as above, in which alternate layers of O-nodes are empty. Suppose

now the result computed in some of the 03-nodes cannot be removed by the A-nodes for some

period of time. This 03-node will therefore start to block the flow of information above it until

all the O-nodes on the path leading to the input root node are filled (see Figure 3-9). Since

alternate layers of O-nodes are originally empty, (log n)/2 more new elements can still enter

the tree before the path in question becomes full. Each of these new elements enter the input

root node every other step. Therefore it takes log n steps to fill up this path.

Figure 3-9: Blocking of flow.

3.2.2.3 Observation 3

If at a certain instant all the 0-nodes are empty (creation of an "empty layer"), then this

"empty layer" will be propagated toward the top of the tree in log n time. (Also, if the creation

of an "empty layer" of 0.nodes occurs every other step in a total of log n steps, then (log n)/2

alternate empty layers of O-nodes will be created, as indicated in Observation 1.)

3.2.2.4 Observation 4

Sinceteach O-node broadcasts to its two offspring only if both are ready, any item a, which

enters the tree will reach all the 0-nodes, though not necessarily at the same time. However,

the items of a given sequence will visit a fixed 0-node in the same order they entered the

input root node.

IV
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3.3 Database Operations

First we briefly mention the selection operation. Next we present a sorting method which

can be viewed as a parallel two-way straight merge sort. Then we discuss projection, as well

as the join, union, and intersection operations.

3.3.1 Notation and Assumptions

Relations will be denoted by A, B, C. The cardinality of relation X is denoted by IXI. The

number of 0-nodes in the tree machine is denoted by n. Relational operations are applied on

argument relations and produce results which are also relations. We use R to denote the

result relation. Depending on the number of argument relations we consider two types of

operations. Operations such as select and project require one argument relation A, while

operations such as join and union are performed on two argument relations A and B. In either

case, we will assume that the needed argument tuples can fit into the primary memory.

Furthermore, we assume that the location and some attribute values corresponding to each

tuple of A- can be stored in a 0-node of the tree machine.

3.3.2 Select

Selection can best be done in the logic-enhanced secondary storage devices, and only

selected data will be retrieved to the database machine. However, the ability of performing

the selection operation inside the tree machine may be useful when it is to be carried out on

intermediate results. A variety of search problems has been considered in (9]. For example,

suppose that each 03-node contains the year of birth, salary, and an employee id number.

Consider the range search query "retrieve all employees born between 1930 and 1950, whose

salary is in the range [15000, 24000]". The appropriate instructions and constants (such as

1930, 1950, ...) are then broadcast to all the 03-nodes where comparisons take place and

output fields are set. The selected employee ids can then be output through the tree of A.

nodes. (An instruction set will be proposed in Chapter 4.)
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3.3.3 Sort

We assume all the data to be sorted reside in the 0-nodes. Sorting with a tree machine of

"small" size will be discussed in Chapter 5. As described earlier in the section on disciplining

of data flow, each A-node ready to take data will select one non-empty offspring to accept its

information. The following rule also achieves the same effect. Each A-node of odd and even

levels alternately executes the step: "Examine its own data and those of its two offspring,

rearranging them if necessary such that it will contain the minimum on a given key." Let

(Location, Key) be the information contained in a A-node executing this step, where Location

denotes the memory location of the data of which Key is a part. (The need for Location will

become clear in the lexicographic sort to be seen in Section 3.3.3.1 and in the sorting

algorithms to be presented in Chapter 5.) Let (Location1 , Key 1) and (Location 2 , Key 2) denote

the corresponding information in its left and right offspring, respectively. This step can be

formulated as follows.

MinKey - minimum(Key,, Key2);
if

MinKey < Key
then
if

Key, = MinKey

then
(Location, Key) - (Location1 , Key1)

else
(Location, Key) - (Location , Key2)

fi
fl

All A-nodes are initialized to contain (dummy location, 00). A node containing oo key will

therefore correspond to a node ready to take data. By exchanging its infinity key with an

offspring holding valid data, it frees this offspring and enables it to accept data. The need for

A-nodes of odd and even levels to operate alternately arises if there is possibility of a node

having a key value greater than that contained in its offspring but less than its parent's.

Consider sorting the tuples of relation A by Key. For each tuple of A we keep a pair

(Location, Key) in a 0'-node of the tree machine. After O(log n) steps, the bottom half of the

tree (formed by A-nodes) becomes a heap-like structure, where the key value at each parent
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node is either infinity or less or equal to those of its offspring. The pair (Location, minimum

key) is available at the root A.node and can be replaced by (dummy location, 00). With this,

the heap property may be temporarily lost. The actions of the A-nodes, however, will attempt

to restore it. The next element of the sorted list will be available in the next step, and it too can

be output and replaced by (dummy location, oo). This goes on until the desired sorted list is

obtained. Therefore the sorting time is O(JAI) + O(log n), dominated by the time to do input

and output between the host and the tree machine.

8 7 6 5 4 3 2 1 8 c 6 c 4 co 2 c0

ox) 00 cco 00 7 5 3 1

(a) c (b) c

8 o0 6 c 4 c 2 00 8 cc c0 00 4 cc 00 cc

7 00 3 00 7 6 3 2
5 5 c

(C) c (d) 1

c c c 4 c cc c 8 c c c 4 c c cc

700 00
2 5 cc

(e) cc (f) 2

Figu re 3- 10: A sorting example.

The first steps of a sorting example are shown in Figure 3-10, where only the bottom part of

the tree machine is represented. Only key values are shov- and these can reside in arbitrary
I-

positions of the 03-nodes. This sorting algorithm can be viewed as a parallel two-way straight

merge sort. With n elements to be sorted in the 0-nodes, n/2 two-element ascending runs

are produced by the first-level A-nodes which are parents of the 03-nodes. The second-level

A-nodes produce n/4 four.element runs, and so on. Notice that an ith-level A-node needs

storage for one element rather than 2' elements. The ordering of each run is implicit in the

relative positions of A-nodes its elements occupy.
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3.3.3.1 Handling Long Key Fields by Lexicographic Sort

Consider the problem of sorting a sequence of m tuples of k component integers each into

lexicographic order. Lexicographic order is, for example,. the order of words in a dictionary, if

the strings of letters are taken as tuples. If the component integer length corresponds to the

maximum key size the sorting device can handle, solution of the above problem allows us to

sort long key fields exceeding that length. (Refer to [65] for a work on the handling of variable

key field lengths.)

000 001 010 O1l 100 101 110 111

E

Figure 3-11: Labeling the nodes of a binary tree.

Let the k-tuples to be sorted lexicographically be (Kil, Ki2 .... Kik), for i = 1, 2, .... m, and let

the memory locations of the tuples, Locationi, be contained in an array called FIFO. A total of

k passes will be used, and in each pass one of the component integers is sorted. At the start

of each pass, the FreePosition fields of the 0-nodes "from left to right" have successively

increasing values from 0 to n-1 (as in Figure 3-3). This can be stated in a more formal way by

the following labeling definition for the nodes of a binary tree. (See Figure 3-11). Let the label

of the root be the empty string e. If the label of a node is X, then its left and right offspring

have labels X0 and Al (concatenation of A with 0 and 1), respectively. The labels of the 0.

nodes will correspond to their FreePosition values at the start of each pass. On the ith pass,

each (Locationi, Ki,k.i + 1) is inserted into the tree machine in the same order Location, appears

in FIFO. Since 0-nodes of increasingly higher FreePosition values are assigned to the

elements being inserted, the ordering in FIFO is retained in the relative position of 03-nodes.

This requirement is essential in the lexicographic sort because we do not want to lose the
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partial ordering already obtained in previous passes. By the way the sorting step is defined in

the last section, if a A.node finds equal keys in both offspring nodes, the left one will be

considered for exchange. This can be viewed as if a key K in a node of label X has been

extended to KX, with X representing the less significant part. As the sorted components

emerge from the device, their ordering is used to update that of FIFO. After p passes, the

tuples in FIFO will be lexicographically sorted according to their rightmost p components.

Thus after the kth pass, FIFO will contain the locations of the lexicographically sorted tuples.

The time for the lexicographic sort is proportional to m k, or the product of the number of

tuples and the number of components in each tuple.

3.3.4 Project

Assume again that relation A resides in primary memory. The main problem of projecting A

over a specified compound attribute is the subsequent removal of duplicates. Three solutions

will be described.

3.3.4.1 Solution 1

Solution 1 is a general solution that can take care of the case in which the compound

attribute length exceeds the key length the sorting device is capable of handling. It consists

of simply sorting the IAI tuples on the compound attribute using the lexicographic sort

algorithm already seen. By examining the sorted list, duplicates can be detected and

removed. This solution requires at least IAI 0-nodes to hold the IAI input pairs (location, one

component key). The time complexity is linear in the cardinality of relation A times the

number of component keys.

3.3.4.2 Solution 2

This solution is interesting if the IAI pairs (location, compound attribute value) are already

inside the 0-nodes (e.g., they are results from previous computations in the tree) and the

compound attribute length is short enough to be handled by the sorting device. All the A-

nodes participate in the duplicate-elimination process, as follows. Each A-node compares its

own compound attribute value with the minimum value of its two offspring. If its own value is

greater than this minimum, it exchanges its data with that of the offspring nodes holding the

minimum.
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(TempLocation, TempKey)'-(Location, Key);
MinKey'-minimum(Key,, Key2);
if

MinKey <Key
then

if
Key, = MinKey

then
(Location, Key).-(Location1 , Key);
(Location,, Key)-(TempLocation, TempKey)

f I;
if

Key 2 = MinKey
then

(Location, Key)-(Location 2, Key 2);
(Location 2, Key 2)-(TempLocation, TempKey)

fl
fi

4 4 7 4 2 4 2 6 0c 00 7 00 00 4 cc0

00 00 cc0c 4 4 2 2

(a) 00 (b) 00

c0 0c 7 CO 0c 4 00. 6 00 00 0c 0c 00 00 0c cc

00 cc cc cc cc 7 46
4 2 4 7c4

WC cc (d) 2

0c 7 00 6 00 7 cc0

(a) cc (f 4

Figure 3-12: Duplicates elimination.

The difference with the previous sorting algorithm is that here the node exchanges its data

with both offspring if they both hold equal key values less than its own. In the sorting
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algorithm, only one such exchange is performed. Figure 3-12 illustrates an example. Again

this solution requires IAI '-nodes, one corresponding to each argument tuple. The time

complexity, however, is now linear in the cardinality of the result relation R. Depending on the

amount of redundancy, this may represent a considerable improvement.

3.3.4.3 Solution 3

This solution is applicable if each compound attribute value is short enough to fit into a 1.

node. Duplicates can be detected and eliminated while the tree is being loaded. For each

compound attribute value (denoted by Key), the tree controller issues two commands: a

membership command to test the presence of Key in the tree, followed by an insert

(NodePosition, Key) command where NodePosition specifies the node where insertion is to

occur (cf. Section 3.2.1.1). Since the membership test result will be available only after 2 log n

steps, the tree controller will have to have some mechanism of associating the membership

testing result with the particular node position where duplicate key occurs. For example, a

FIFO-type structure can be used. If the answer to the membership command is negative, the

insertion of Key is indeed necessary. In case the tree controller gets a positive answer, it will

locate the corresponding node position and "delete" that node by allowing the next insert

command to overwrite this node. Denoting by NodePosition' the node position which holds a

duplicate value, we have the following.

Obtain the next Key to be inserted;
Consider the answer to a previously issued member command;
if

member gives positive answer
then

Obtain NodePosition' from FIFO;
NodePosition--NodePosition';

else
NodePosition.-FirstFree;
FirstFree--FirstFree- 1

fl;

Issue command member(Key);
Issue command insert(NodePosition, Key);
Update FIFO with NodePosition

Notice that at any given instant the 1.nodes may contain duplicated values, but the total

number of such nodes will not exceed 2 log n. After all the tuples of the argument relation A
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have been considered, the tree controller may still receive answers of member commands

reporting duplicates. In this case, it will simply issue dummy insert commands to overwrite

such redundant nodes. The dominant time is linear in the cardinality of the argument relation

A. The nice thing about this more complicated solution is that the number of 0-nodes

required is now equal to the cardinality of the result relation R plus 2 log n.

3.3.5 Join

A detailed study of ten different join methods under various assumptions has been made by

Blasgen and Eswaran [13]. Its findings were used as a basis for the join techniques used in

System R [2]. Among the two methods that were selected as the best, one consists of the

sorting of the two argument relations by their join fields and the subsequent merge where

values are matched. Having already described the sorting method in previous sections, we

proceed to describe another possible solution. All the tuples of relation A are kept in primary

memory, with pairs consisting of their memory locations and join attribute values, (LocationAs

AttributeA), stored in the O-nodes. For each tuple of relation B, pairs consisting of

(Location8 , AttributeB) are broadcast to the 0-nodes where the two join attribute values are

compared. The matching cases will output the two corresponding locations so that the tuples

can be located and concatenated to form a result tuple. The primary memory requirement is

to hold IAI A-tuples and log IBI B-tuples. The time to perform the join is proportional to IAI +

IRI, where R is the result relation.

3.3.6 Union and Intersection

Again, we can first sort the two relations and then obtain the result relation by simply doing

a scan through both sorted sequences. Since whole tuples need to be sorted, the

lexicographic sort probably will be necessary. If a tuple can fit into a 0-node, a second

solution to obtain the intersection is similar to the removal of duplicates, with the exception

that no duplicates can occur within t .ih argument relation. If we store relation A in the 0-

nodes, then a sequence' of member queries for tuples of relation B suffices to produce the

result. The union operation can be carried out similarly.

/I
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3.4 Partitioning Strategies

The algorithms we have presented depend on two strong assumptions (Section 3.3.1). The

first assumption is that all the tuples needed for the evaluation of the sort operation or

relational operation can fit into the primary memory. The second one requires a large special-

purpose device which always meets the size requirement. For such algorithms to be of any

practical significance at all, provisions must be made to handle cases in which these

assumptions do not hold. In this section we assume that argument relations reside on

secondary storage and discuss how appropriate partitions that fit into the primary memory

can be selected and brought into the memory. This will be called external evaluation. (Much

of the nomenclature used in this section is taken from [831). Once a partition of data is inside

the memory, their handling by a smaller special-purpose device will be discussed in Chapter

5.

<x 2) > x 7 -x 2> <x 7> <x 2> <x 4>

<x 4> <x 5> x 4> <x 5> <x 4> <x 4>

<x 4> <x 2> <x 4> <x 0> <x 4> <x 2>

<x 2> <x O >X 7> < x 2> <x 2> <x" O>
A

<x 9> <x 2> <x 5> <x 3> <x 9> <x 2>

<x 6> <x 3> <x 9> <5 y> <x S> <x 3>

<x 7> <x 5) Cx 6> <5 y> <x 7> <x 1>1

<x 5> <x 5) <x 0> <2 y > Cx 6) x 4>

<x 9> <x 4> <x 3> Cx 6> Cx 9> <x 5>
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<x 3> Cx 4> B C6 y> <x 4> Cx 3> <x 5>

Cx 5> <x 1) <5 V) <9 y> <x 5) <x 5>

(x 1> Cx 6> <5 y> <I y> <x 1> <x 8>
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(a) (b) ()

Figure 3-13: Examples of key-disjoint partitions

-The main idea Is to decompose argument tuples into partitions in such a way that each

[.
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particular tuple needs to be input only once. This means that all the tuples which possibly

might interact should belong to the same partition. In the case of project where the main

difficulty is the removal of duplicates, the partitions should be key-disjoint in the sense that no

tuple in a partition can have a key (the projected compound attribute) equal to that of a tuple

in different partition. In other words, all the duplicates, if any, belong to the same partition.

Figure 3.13 (a) illustrates an example where only the projected attribute is explicitly shown,

with the remaining columns represented by x. In the first partition shown, the duplicate values

are 2 and 5, and in the second partition the duplicates are 4, 6, and 9.

For a two-argument operation such as join (similarly, union or intersection), a key-disjoint

partition contains tuples of both argument relations with no tuple in one partition having a key

(the join attribute) equal to that of a tuple in a different partition. This means that if two tuples,

one from each argument relation, are to be concatenated to form a result tuple of the join,

they should belong to the same partition. Figure 3-13 (b) depicts an example where only the

join fields of the argument relations A and B are explicitly shown.

In the case of sorting, the keys of tuples in a partition should also be contiguous so that

each partition being input to the primary memory contains keys greater than those of

partitions already input. An example is illustrated in Figure 3-13 (c).

It should be clear that the partitions thus defined are not guaranteed to fit into the primary

memory and a tuple may in fact have to be input more than once. In the worst case, all the

keys of all the argument tuples may be equal, resulting in one single partition which is the

whole argument set. Details of overflow handling can be found in [83].

Two decomposition procedures to select the desired partitions will be discussed. The first

one is the hashing method due to Shaw [83]. It is suitable for handling external evaluation of

project, join, union, and intersection. The second one is a statistical method based on ideas

used in an internal sorting algorithm, due to Weide [92]. We show that these ideas can be

used in combination with the logic-per-track concept to produce a partitioning method for

join, project, and external sorting.
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3.4.1 Partitioning by Hashing

Let t denote the total number of argument tuples and c the capacity in tuples of the primary

memory. If the keys are distributed uniformly over some range [xin , xmx], then this range

can simply be divided equally into p = t/c subranges each of which will be used to delimit the

range of one partition. Successive partitions can then be read into the memory in a

monotonic sequence of the key ranges. The uniform distribution assumption is of course too

strong. To handle non-uniform distributions, a hash function H can be used to scramble the

key values so that, given a large set of keys, we hope to obtain a uniform distribution. of the

hashed values. In other words, if h,,, and hnw denote the minimum and maximum of the

hashed values, then we divide the range [hmin, hIax] into p subranges each of which will

determine one partition. The value of p is given by the expression

p= r(1 + W) t/cl,
where W is a waste factor. Shaw [83] shows that, if the distribution of hashed values is indeed

close to uniform, then a relatively modest value of W (around 0.1) should suffice to make the

cost of overflow recovery negligible. Success of the partitioning process by hashing thus

relies on the randomizing property of the hash function. The distribution of hash values may

not always be close to uniform. Notice that this method does not produce partitions with

contiguous keys and therefore is not applicable for external sorting.

3.4.2 Partitioning by Using the Distribution Function

The distribution function Fx of a random variable X is a function such that, for each real x,

Fx(X) = P[X < x],

or the probability of the event X < x. The function Fx is nondecreasing with the following

property.

If x1 < x2 , then P[x1 < X e x2] = Fx(x2 ) - Fx(Xl).

If the key values x are uniformly distributed, as shown by their distribution function Fx(x) in

Figure 3-14 (a), then equally spaced divisions on txn, rXx will determine equally spaced

divisions on [0, 11 along the Fx(x)-axis. Thus if each of the equal subintervals on [xniin , Xna]

is used to determine a subrange of a partition then, by the above property, the size of each

partition will be about the same. However, if the keys are not uniformly distributed, as
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FX(x) F(x) F (y)
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Figure 3-14: Examples of distribution functions.

illustrated in Figure 3.14 (b), the same method will produce partitions of different sizes. In the

previous method, a hash or scrambling function is used with the hope that the hashed values

have a distribution close to uniform. An ideal function is one which always maps the key

values uniformly onto [ht n, hmax]. One such function, to be shown informally below, is the

very same distribution function Fx(x). (A formal presentation can be found in [92] which forms

the main basis of this section. Related ideas, presented in the form of domain histogram, can

also be found in [691.) Let the random variable X have the distribution function Fx(x), as

illustrated in Figure 3-14 (b). Let the random variable Y be equal to Fx(X). For a fixed y =

Fx(x) in [0, 11, we have

Fy(y) = PY <: y

= P[Fx(X) _ Y

= P[X < x]

= Fx(X)

=y,

and thus Y has uniform distribution between 0 and 1 (Figure 3-14 (c)).

Unlike the previous method, the transformation here is a nondecreasing function and

therefore the ordering of keys is preserved. It is thus also suitable for external sorting where

contiguous keys should be retrieved in the same partition. To handle cases in which

distribution of keys is not known a priori, Weide [92] suggests its estimate by sampling the

LINIMUM"



PAGE 51 SECTION 3.4 PARTITIONING STRATEGIES

inputs to produce an empirical distribution function. His theoretic result is further confirmed

by experimental runs on nonuniformly distributed data. The sample size used is constant and

relatively small (between 10 and 30). Such experiments show that partitioning by the

empirical distribution function can indeed be a practical method.

3.4.3 Discussion of the Hardware Requirements

We have shown two methods to obtain the appropriate partitions to be input to the primary

memory for processing. Selection of the components of each partition can best be carried

out by some kind of logic-enhanced secondary storage devices. Both Lin (69] and Shaw (83]

suggest use of some kind of logic-per-track devices. With such hardware, a partition can

essentially be brought to the memory in every disk rotation, assuming enough data can be

retrieved. This would of course require a very fast handling of the retrieved data. As we shall

see in Chapter 5, with a special-purpose hardware device of limited capacity, there are certain

inherent I/0 constraints which prohibit an arbitrary performance improvement. Therefore the

amount of logic enhancement in the secondary storage devices should be enough to reach

the ultimate goal of maintaining a continuous data flow.

3.5 Concluding Remarks

The new insertion and deletion procedures presented in this chapter offer two advantages:

pipelining of sequences of inserts and deletes, and less storage and logic in each 0-node.

The latter advantage is probably more significant, since pipelining still would not be possible if

the deletion assumption cannot be met. We have shown, however, that there are many

concrete examples where deletion is performed only on inserted items. For such cases, the

proposed scheme seems especially attractive.

With a large special-purpose device as assumed in this chapter, considerable performance

improvements are obtained. The question is whether such a device is economically

justifiable. In Chapter 5 we consider sorting and show that, even with a relatively small device,

substantial speed-ups with respect to fast sequential sorting algorithms are possible. Since

many important operations such as join and project can be reducible to sorting problems, an

alternative to the design used in this chapter is to build a fast sorting device.
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Chapter 4

Implementation Considerations

Some implementation considerations are contained in this chapter. We discusses the

packaging of large tree structures on chips. The packaging method to be proposed requires

only one type of fully utilized component chips. The wire lengths interconnecting component

chips are shorter than previously known methods. The main result is based on a layout result

for a new structure called a linearized tree that combines the characteristics of the linear

array and the binary tree.

We also present a simple architecture and instruction set for the 0-nodes. Recall 0-nodes

are the leaf nodes of the tree where data are stored and most computations take place.

Signaling conventions in the 0-nodes, as well as the exchange operations of the A-nodes, are

discussed. Based on the simple design, pin requirements and some timing estimates are

derived. A number of performance improvement results to be derived in later chapters are

based on assumptions and estimates of this chapter. We note that we have used conservative

estimates, preferring to underestimate rather than overestimate them.

4.1 Packaging Large Tree Structures

Since the appearance of the hexagonal systolic arrays for matrix computations [51], many

other structures have been proposed to solve various kinds of problems. Such structures

include the linear and orthogonal arrays, binary trees, etc. The simplicity and regularity of the

interconnections in these structures are desirable properties for VLSI implementation. They

ensure that communication will be local between neighbor cells and that the resulting layout

will be compact. Such structures are modular in that their size can be extended as the chip

capacity increases (with larger chip area or increased component density, or both). An
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interesting case to examine is when the structure needs more than one chip to be

implemented. A large structure has to be decomposed into smaller components each of

which can fit into one chip. The resulting chips are then linked together on one or more

circuit boards. One immediate constraint in the partitioning of a given structure among chips

is the pin limitation. Though chip capacity is increasing at a steady rate, the number of pins

remains remarkably limited and is likely to improve only slowly. The nice properties we look

for in a good partitioning strategy are very similar to those of systolic VLSI designs. A good

VLSI design employs a few basic cells, interconnected together in a simple and regular way.

Here we wish to use a few types of different fully utilized chips, for economic reasons. For the

same reason, we would like to place as many chips on a circuit board as possible. In order to

obtain a compact layout of component chips interconnected with short wires, the

interconnection of chips should be simple and regula, This similarity shows that, if the layout

of the component chips is one of the well-known structures proposed in earlier systolic

algorithms, then packaging will likely be easy.

4.1.1 The Linearized Tree

(a) (b)

Figure 4-1: The linearized tree and a special case.

The linearized tree is a combination of a binary tree and a linear array, with each node in

the binary tree connected to a node in the linear array in such a way that two nodes in the

binary tree that are neighbors in the in-order traversal are connected to two neighbor nodes

of the linear array. This is illustrated in Figure 4-1 (a). Figure 4-1 (b) shows a special case of a

linearized tree where the linear array nodes are connected only to the leaves of the binary

tree. In other words, only the leaves are linearized.
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(a) (b)

Figure 4-2: The resulting structures after collapsing vertically connected nodes.

Let us now take the structures of Figure 4-1 (a) and (b) and collapse each pair of vertically

connected nodes into a single node. The resulting structures are shown in Figure 4-2 (a) and

(b). We will call the structure in Figure 4-2 (a) a threaded tree, borrowing the notation from

Knuth [45]. The link connecting a leaf to an internal node will be referred to as a thread link.

The threaded tree structure has also appeared in a work by Rosenberg, Wood, and Galil [78],

under a different context (embedding of tree structures in trees), and by the name of "dree".

Rem [77] discusses, hierarchical structures and leaves open the question of whether to

provide logic in the internal nodes of a binary tree or in its leaves. Bentley and Kung [9] for

example, as in this work, decided to store data in the leaves where most of the computations

take place. With the linearized tree represented in the form of a threaded tree, however, such

decisions become unimportant, since the internal nodes and the leaves are connected

through the thread links. The structure of Figure 4-2 (b) has been proposed for implementing

priority queues [64], for maximal rate computation of recurrence relations [48], and for

implementing a reduction language machine [72, 73].

4.1.1.1 Threaded Tree Layout

The threaded tree can be nicely laid out in the plane by applying a simple recursive

1rocedure, as illustrated in Figure 4-3 (a) through (g). The threaded tree can be viewed as a

binary tree plus the thread links. Its layout is similar to the classical H-layout for binary trees

[75]. The recursive method to be presented applies rotation to part of the H-layout in such a

way that all the thread links have constant length. Let k be a power of two denoting the

nwnber of leaves of a threaded tree. In Figure 4-3 (a) a threaded tree with k = 4 is shown. The

thick lines represent the thread links, and the small circles denote the two end leaves which
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(a)k=4 (b)k=8 (c)k= 16 (d)

x X

(e)k=32 1 (g) k =4

Figure 4-3: Laying out a threaded tree by a recursive procedure.

do not have thread links. Figure 4-3 (b), for k = 8, is obtained by combining (a) with its mirror

image with respect to a horizontal axis and adding two more thread links. Similarly Figure 4-3

(c), for k - 16, is obtained by combining (b) with its mirror image with respect to a vertical axis

and adding two more thread links. To obtain the layout for k = 32, we first obtain (d) by

rotating part of (c) along xx' (to bring the two end leaves to the periphery) and then repeat the

same construction as before. Similarly, for k = 64, we first obtain (f) from (e) by rotating part

of (e) along xx' and then get (g). Thus, by construction, the resulting layout always has the

property that all thread links are of constant length connecting neighbor nodes.
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The layout of the threaded tree represents a self-contained result. It is interesting that this

result can also be applied to the packaging of certain tree structures on chips. Such tree

structures include the binary tree and the very same threaded tree.

4.1.1.2 Packaging a Large Binary Tree

Consider a large binary tree that needs a number of chips to be implemented. We repeat

below the desirable characteristics of a packaging scheme.

1. Uses few types of component chips.

2. Fully utilizes each component chip.

3. Allows compact layout of the component chips.

4. Uses short wires to interconnect component chips.

(a) (b)

Figure 4-4: Two packaging schemes.

Two solutions are shown in Figure 4-4 (a) and (b). Each square at the bottom level, called a

leaf chip, implements a sub binary tree (represented by the triangle). Solution (a) employs

one chip, called an internal chip, for each internal binary tree node. The resulting component

chip layout is still a binary tree, and can be compactly laid out on a circuit board. This

solution, however, requires two types of component chips, and the internal chips are sub-

utilized. Solution (b) attempts to put r internal binary nodes on an internal chip. The value of

r, however, is restricted by pin limitation. The resulting chip layout is no longer a binary tree,

but an (r + 1).ary tree.

.1
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Figure 4-5: A new solution.

Figu re 4-6: Chip layout after accommodating internal nodes.

For a binary tree of k leaf chips, we have exactly k-1 internal nodes that remain to be

accommodated. Consider Figure 4-5. Let us make each leaf chip take one additional internal

node as indicated by the arrow, that is, the in-order successor of the leaf chip considered as a

single node. We obtain Figure 4-6. With this we have succeeded in employing only one type

of chip which is fully utilized. Furthermore, the resulting layout is an incomplete threaded

tree, or a left-threaded tree. We can thus apply the previous result and obtain Figure 4-7.

S.E
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Figure 4-7: Final binary tree chip layout.

4.1.1.3 Discussion

The idea of incorporating an internal node to each leaf chip containing a sub binary tree is

due to Leiserson [65]. Our method differs from his in the choice of the internal node to be

combined into a leaf chip, and also in the application of rotation to appropriate parts during

the layout process. While Leiserson's method essentially requires four times the

interconnection wiring length of the classical H-layout, the proposed scheme uses only once.

This is because the additional wires (not present in the H-layout) are all thread links which are

of constant length connecting neighbor chips., Also, the proposed method is more general in

that it can be extended to other kinds of tree structures as we shall shortly show.

The layout results are presented here in topological terms. In order to apply such results in

practice, we should also take geometry into consideration. In a classical H-layout, as we

proceed from the leaves to the root, the interconnection wires become longer. As a result, the
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drivers must be proportionally larger to drive them. The root of the tree, the largest node of

all, would then communicate off the chip to the outside world without much performance

penalty. In the proposed scheme, as well as in those using a single type of component chips,

this is no longer true. If all the chips are identical then the nodes of the H-layout (of chips on

circuit board) would be same in size, though all now communicate off the chip to other chips.

It remains to be seen whether such a scheme would result in severe performance penalty.

4.1.1.4 Packaging a Large Threaded Tree

Figure 4-8 shows a large threaded tree that cannot fit into one single chip. Again, we make

each leaf chip accommodate one additional internal node (its in-order successor). The

resulting layout shown in Figure 4-9 is again a threaded tree, and hence we know how to lay it

out. Figure 4-10 shows the final layout. As before, only one type of fully utilized chips is

needed, and the thread links are all of constant length connecting neighbor chips.

Figure 4-8: A large threaded tree.

4.2 Design Considerations

The main purpose of this section is to give some feeling for the complexity of an overall

design, as well as to get .some ideas on the design decisions involved. It will also provide us

with rough timing estimates for the basic instructions and area estimates for implementing

one 0-node. We assume a datapath four bits wide for passing data between the nodes of the

binary tree. Define a clock cycle as composed of two non-overlapping phases 9), and 92"
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Figure 4-9: Chip layout after a%commodating internal nodes.

* Figure 4-10: Final threaded tree chip layout.
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4.2.1 Circle Nodes

Instructions and data, originated from the host or the interface controller, are inserted into

the root 0-node and broadcast to the 0-nodes. As. discussed earlier, some signaling

conventions need to be devised. We use 2-cycle signaling where initiation and completion of

operations are indicated by level transitions in two wires labeled Request and Acknowledge.

The exact meaning of Request/Acknowledge depends of course on what is being requested

and acknowledged. For example, Request can mean a request for the offspring nodes to take

data, and Acknowledge sent back to a parent node can mean data have been taken. We shall

use the following interpretation. A node sends Request to its parent node for data, and

Acknowledge is sent to offspring nodes to indicate availability of data.

Req
Node under
consideration Ack

ao ton Ac
Data

Figu re 4-1: Data and signaling wires.

We assume each 0-node has a 4-bit storage latch. For expository purposes, Figure 4-11

gives the names of Request/Acknowledge wires for a particular node under consideration.

The Resquest/Acknowledge signals transmit level transitions in either direction. When a

node detects the occurrence of a level transition, say-in Req I (from its left offspring), it may

not be able to attend to the request immediately. This occurrence of level transition is

recorded in a memory element called Requesting, to indicate a pending request from the left

offspring. Similarly we have Requesting 2 for the right offspring. Requesting1 and

Requesting2 are reset when the requests have been attended.
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Present state Inputs Action Next state

InitialState Cause transition in Req WaitForData

WaitForData Transition in Ack Latch data HasData

Cause transitions in
AcklRequesting1 Ack2

HasData and Ack2 WaitForData
Requesting2 Req

Clear Requesting1
Clear Requesting2

Table 4-1: State transition table.

Consider the state transition table (Table 4-1). Initially all the 0-nodes and -. nodes send

requests to their parent nodes for data and go to the WaitForData state. A node may stay in

the WaitForData state indefinitely, until an acknowledge signal is received from its parent. It

then latches data and goes to the HasData state. Again, a node will remain in the HasData

state until it has received requests for data from both offspring. Several actions are then

taken. It sends acknowledge signals to both offspring and cancels the pending requests. It

also sends a request to its parent for more data. Notice that when a node latches data after

receiving an acknowledge signal, it can start sending the same data to its offspring nodes.

Transmission of data thus has a head start over the transmission of the acknowledge signals

eventually sent out when the right conditions are met. We assume that this delay can take

care of the skew problem. Refering back to the state transition table, the system can be

initialized with all the 0-nodes and 0-nodes in the WaitForData state and with Requesting1

and Requesting2 true. The interface controller, which acts as a parent node with respect to

the root 0-node, can thus start sending data and acknowledge signals to initiate the

broadcasting. We assume that a 4-bit chunk of data can be transferred from a 0-node to

another in a clock cycle.
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4.2.2 Square Nodes

Figure 4-12 illustrates the components of a 0-node. Each 0-node has eight 16-bit

registers (Reg0 through Reg7), a ALU, eight flag bits (Flag0 through Flag7 ), and interfaces with

the 0-node and A-node. Rego is the accumulator A which will participate in most of the

instructions. Similarly, Flag0 participates in most of the bit operations. The interface with the

0-node consists of a 4-bit storage latch and Request/Acknowledge logic, just as any other 0-

node. A 0-node interfaces with the A-node through two 16-bit registers, called LocOut and

KeyOut. Data placed in these registers, normally consisting of a memory location and a key,

are output through the tree of A-nodes.

Interface with 0-node

Reg Fag

0 Accumlator 4 ALU

2

3
4

5

7

[ Interface with -node

Figure 4-12: Components of a 0-node.
C.

An instruction has eight bits: a 5-bit op-code and 3-bit operand. Table 4-2 contains

instructions that define contents of registers or flag bits, or move data to and from the

accumulator. Table 4-3 contains the basic arithmetic and logical instructions.

Assembling an instruction requires two cycles. We assume that the instructions of Tables
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Format Description

Input i Define Reg i with the input content X

Content X

InputCond i Same as above if Flag0 = 1

Content X

Load i Set A4 - Reg,

Store i Set Reg i 4- A

StoreLocOut Set LocOut 4- A if Flag, = 1

StoreKeyOut Set KeyOut *- A if Flag.= 1

SetOne i Set Reg "

SetZeroi Set Reg, 4. 0

LoadFlag i Set Flag 0 . Flag I

StoreFlag i Set Flag ,- Flag °

SetFlag i Set Flag i ,- 1

ResetFlag i Set Flag 4- 0

Table 4-2: Data movement instructions.

4.2 and 4-3, with exception of the input instructions (Input and InputCond), can be executed

in two cycles. For these instructions, execution of the current one can overlap with

assembling the next instruction. For the input instructions, however, the content to be input

follow the current input instruction, and overlap is not possible. The total time for an input

instruction is thus six cycles. A request for the next instruction will be sent when execution of

the current instruction is complete.

II
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Format Description

Addi A. A +Reg i

Subtract i A 4- A - Reg,

ShiftUp i Reg, A .2

ShiftDown i Reg, - A / 2

Compare i Flag 0 4- (A =Reg,)
Flag1  (A < Reg,)
Flag 2 -(A > Reg,)

CompareAnd i Flag 0  Flag0 A (A =Reg1 )
Flag 1 - Flag 1 A (A < Reg,)
Flag 2 4- Flag 2 A (A > Reg)

CompareOr i Flag 0  Flagov (A =Reg,)
Flag 1  Flag1 v (A < Reg,)
Flag 2  Flag 2 V (A > Reg,)

Andi Flag 0 - Flag 0 A Fagi
Or I Flag 0  Flag 0 v Flag,

Excli Flag 0  Flag 0 eFlag i

Noti Flag 0 -,Flag i

Table 4-3: Arithmetic and logical instructions.

4.2.3 Triangle Nodes

Each A-node has storage for three pairs of keys and locations, corresponding to its own

and those of its two offspring nodes. The function of a A-node is to rearrange these data such

that it will retain the minimum key and the corresponding location. Details of this exchange

operation will be discussed in Chapter 5. We assume that the exchange operation is the only

operation performed by the A-nodes. Though it is intended to carry out the basic sorting step,

it can also be used to output any two data items, loaded into the output registers LocOut and

KeyOut.
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4.2.4 Pin Requirements

The binary tree formed by the 0-nodes is the mirror image of the binary tree of the A-nodes

(Figure 4.13 (a)). By an "unmirroring" process, we can obtain the resulting binary tree

structure of Figure 4-13 (b), which can then be packaged into chips by using the result of

Section 4.1.1.2. A component chip of Figure 4-6 or 4-7 has the format shown in Figure 4-13

(c) where the two large overlapped triangles denote a subtree of Figure 4-13 (b).

(a) (b) (C)

Figure 4-13: The unmirroring process and one component chip.

With a datapath of four bits wide for the data portion, we need at least

6x(4 + 4) - 48 pins,

not counting those needed for power, ground, and clocks.

4.2.5 Timing and Area Estimates

Assuming a cycle of 100 ns, execution of most instructions, except the input instructions,

takes 200 ns. An input instruction takes 600 ns. Four cycles, or 400 ns, are needed to pass a

16-bit quantity from a node to its neighbor. Some of these timings will be used in later

chapters.

Consider the layout of a C-node as illustrated in Figure 4-14. We can get a fairly accurate

estimate for the area of the eight 16-bit register array from the similar array in the design of

OM2 (741. This gives the approximate dimensions of 700 X 2 by 440 X for the register army.

A denotes the mnImum feature size resolvable by the implementation process. A minimum-sized transistor has

gale width of 2X
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200,\
PLA's

7X - - -I . . -

S- ALU

III R R4  P3  R 2 R, o

"o X D\

Figure 4-14: Layout of one 0-node.

An adder cell used in [53]1is about 50 A by 100 X. We estimate the area for the ALU to be

700 X by 200 X. The area for the PLAs used for control and decoding is assumed to be 200 X

by 440 A. Using X - 2.5 mm, the dimensions of a 0-niode is 2.3 mm by 1.6 mm. An internal

node (in fact, a combination of a 0-node and a,4-node) utilizes less storage than the 03-node,

and is assumed to require 2.3 mm by 1.2 mm. As shown in Figure 4-15, we can put eight 0.

nodes and eight internal nodes on a 10 mm by 6 mm chip. A more conservative estimate

would put four 03-nodes and four internal nodes on one chip.
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6 mm

10 mm

Figu Fe 4-15: Layout of one component chip.

4.2.6 Some Examples

We now show how the instruction set can be used to solve database operations. We

consider insertion, deletion, selection, and join. The sort operation is discussed in Chapter 5.

In Section 6.6 the instuction set is used to solve a rectangle-intersection problem.

4.2.6.1 Insertion

The following instructions can be used to insert a content X into Reg 2 of a 0-node, whose

Reg1 contains the FreePosition F (see Section 3.2.1.1).

Instruction Comment

Input 0 Input position of free node
F
Compare 1 See if selected
InputCond 2 Define Reg2 of selected node
X
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4.2.6.2 Deletion

The following instructions delete the node with Reg 2 equal to X, and return it to the pool of

free nodes. A FreePosition F will be loaded into Reg1 of the deleted node.

Instruction Comment

Input 0 Input X
X
Compare 2 See if qualified for deletion
InputCond 1 Return to pool if deleted
F

The deletion condition can be more complex. We merely replace the "Compare 2"

instruction by a sequence of instructions expressing the condition, and set Flag o if the

deletion condition is met.

4.2.6.3 Selection

To carry out the selection "retrieve all tuple ids (stored in Reg3) where Reg1 = 1981 and

10000< Reg2 < 20000", we can use the following instructions.

Instruction Comment

Input 0 Input constant 1981
1981
Compare 1
StoreFlag 1 Flag1 - Reg1 = 1981
Input 0 Input constant 10000
10000
CompareAnd 2
LoadFlag 1
StoreFlag 2 Flag2 - Reg, = 1981 A 10000 < Reg 2
Input 0 Input constant 20000
20000
CompareAnd 2
.oadFiag 2 Flag0 . Reg, = 1981 A 10000 < Reg2 < 20000
Load 3
StoreLocOut Define output register with seleted tuple id

It
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4.2.6.4 Join

Consider the join of relations A and B over some join attribute. Let Reg 2 and Reg3 contain

the join attribute (AttrA) and the corresponding memory location (LocA) of a tuple of A. The

join operation can be carried out by the following sequence of operations for each tuple of

relation B.

Instruction Comment

Input 0 Input AttrB
AttrB
Compare 2 See if AttrA - AttrB
Input 0 Input LocB
LocB
StoreLocOut Define output registers
Load 3
StoreKeyOut

4.3 Concluding Remarks

The packaging scheme presented in this chapter uses about one fourth of the total wire

length with respect to the best previous packaging scheme. This result may be significant for

packaging very large binary trees. To overcome the resistance and capacitance of long

wires, large drivers are needed. Less interconnection wiring will thus reduce the number of

large drivers. We note that the proposed scheme can be applied to the packaging of large

linearized trees.

As an alternative to implementing the tree machine by custom design, we can also consider

each node of the tree as implemented by a microprocessor. This approach is suggested in

the X-tree project, in the context of a multiprocessor network design [801. For the type of

solution we are considering, the microprocessor as a tree node may be too powerful and

general.purpose. The custom design approach has the advantage of requiring much less

area for each node. To implement a tree machine of 64 leaves and 63 internal nodes, for

example, we need only eight chips if our area estimate is correct. Even if we use the more

conservative estimate, we still need a total of only sixteen chips. This represents a significant

saving as compared to 127 microprocessor chips, each implementing one tree node.

I
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A multiprocessor scheme for database applications proposed in [25] utilizes a number of

microprocessors connected to a number of memories through a cross-bar switch. With such

a scheme, the degree of parallelism may be limited. When the number of microprocessors

and memories increases, the contention problem, among others, will degrade the

performance. Also, in an economic sense, the number of switching elements may become

rapidly infeasible. The custom design approach becomes more attractive when the chip

capacity continues to increase. The modularity of the interconnection structure will allow an

even larger degree of parallelism to be employed.

I
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Chapter 5

Special-Purpose Hardware for Sorting

The problem of arranging a list of elements residing in main memory to form a sorted list is

an important and basic problem. Sorting is frequently the dominant step in many algorithms.

Knuth writes in the preface of [46] that he believes that virtually every important aspect of

programming arises somewhere in the context of sorting and searching. He also notes the

computer manufacturers' estimate that over 25 percent of the running time on their

computers is spent on sorting, and that there are many installations in which sorting requires

more than half of the computing time.

Sorting is also important in database applications. Once the required partition of data is

brought into the main store, for example by some of the means as described in Section 3.4,

operations such as project and join can all be treated as the sorting problem, with a

subsequent linear match phase. The importance of the sorting operation in database

applications is further strengthened by the findings of Blasgen and Eswaran that performing

the join by sorting is among the two best of ten join methods [13].

Instead of running a classical sequential sorting algorithm on a conventional computer, we

can use a special-purpose hardware device which accesses the memory directly to fetch the

data to be sorted. Hardware-oriented sorting algorithms are described in [18] and [89], where

quite impressive speed-up results are reported. By speed-up here we mean the ratio between

the running times without and with the use of the special-purpose hardware. Such designs

have concentrated mainly on the isolated sorting phase, without paying much attention to

how data get to the sorting hardware. More significantly, no decomposition procedures are

mentioned to handle the case where the number of data to be sorted exceeds the size of the

special-purpose sorting device.
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In this chapter we examine the problem of sorting a collection of numbers residing in the

main memory with a special-purpcse hardware device of a limited capacity. The important

issues to be addressed. however, are not limited to the special case of sorting. In evaluating

the performance of a high-speed special-purpose device, it does not suffice to consider the

performance at an isolated, say chip, level. Since a special-purpose device is typically

attached to a host, from which it gets the data to be processed and to which it outputs results,

I/0 considerations play an important role on the overall performance. The problem of I/0

between the host and the special-purpo.e device becomes even more aggravated when a

large computation cannot be handled all at once inside the device. Partitioning the

computation into subcomputations implies the need to store and retrieve intermediate results.

Often the amount of I/0 needed will dictate the ultimate system performance, no matter how

fast the special-purpose hardware can operate. Hong and Kung [371 have shown that the

amount of I/0 required for performing a Fast Fourier Transform of size n on a device of size s

is 12(n log n/log s). This implies that the maximum speed-up we can expect with respect to

the O(n log n) sequential algorithm is of order log s.

We shall show that the I/0 complexity to sort n numbers in the main memory by a special-

purpose device of size s is Q(n log n/(t log s)), assuming the I/0 bandwidth between the two

sites is such that 2t numbers can be transmitted in one unit time. In Section 5.2 we present an

algorithm for t = 1 which achieves this bound. These results are important in that they give

us an idea on the order of magnitude of the speed-up we can expect, regardless of the details

of any concrete design or implementation. Furthermore, their knowledge serves as a

guideline as to what constitutes an optimal design. Use of I/0 complexity to guide the design

of special-purpose sorting hardware ;s illustrated in this chapter. First we obtain a lower

bound result on the I/0 complexity. Then we present an algorithm based on the multiway

merge sort that achieves this bound. Two versions of the algorithm will be shown. The linear

array version is based on the systolic priority queue [64], and the binary tree version is based

on a hardware heap which can be implemented on the tree device described earlier. Both

versions, to be referred to as systolic solutions, will be analyzed in detail. Then we discuss the

design of the tree device and its interface with the host such that the overlap between

computation and I/0 is as nearly perfect as possible. Based on the analysis results and some
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implementation considerations discussed in Section 4.2, the expected performance

improvements over two fast sequential sorting algorithms will be shown in Section 5.4.

5.1 I/O Complexity for Sorting

We now examine a lower bound result on the I/O complexity. First we define a model and

some notation for its derivation.

5.1.1 Model Definition and Notation

We define the following model. We are given n numbers, assumed without loss of

generality to be all distinct. We assume that these numbers are so small in physical size that,

in order to see a number, we need to place a magnifying glass over it. We are given s

magnifying glasses, with s < n. Moving a magnifying glass from one number to another is

called a 1 -move; t 1-moves constitute a t-move. Magnified numbers can be compared against

one another and all previous comparison outcomes can be used to guide the selection of a

next move. Comparison is the only operation we can perform. on the numbers and it is

assumed to be free. A t-move, however, costs one unit time. The goal is to produce a total

ordering of the n numbers with a minimum amount of t-moves.

Figure 5-1: A 1-move replacing x1 byz.

At any given time, at most s numbers can be magnified. A configuration of such a

collection of numbers will be represented by an oval encircling the magnified numbers. A 1-

move is illustrated in Figure 5-1, where the oval pointed to by the arrow indicates the new

configuration produced by the 1-move. In this new configuration, the partition to the left of

the dashed-line contains the newly magnified number.
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5.1.2 A Lower Bound Result

We now show how information theoretic arguments similar to those in (461 can be used to

derive lower bound results.

Theorem 1:

Let H be the minimum number of t-moves to sort n numbers, in the worst-case. We have

H = G(n log n/(t log s)).

Proof:

Let the magnified numbers of a current configuration be x1 , x2 ... xs . After any 1-move the

newly magnified number, say z, can be compared against some or all of the other s - 1

numbers. At most s outcomes are possible, namely, '

z is less than s - 1 numbers, and greater than none, or

z is less than s - 2 numbers, and greater than 1 number, or

z is less than s - 3 numbers, and greater than 2 numbers, or

z ,s less than none, and greater than s - 1 numbers.

Therefore, the number of outcomes after a t-move is s".

Figure 5-2: An st.ary t-move tree.
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A sorting method under this model can be represented by an st-ary t-move tree as in Figure

5-2. Each internal node in this tree represents a t-move. The leaves of the tree contains a

permutation of (1, 2, ..., n) indicating the ordering of the initial collection of n numbers to be

sorted. The t-move tree is similar to the comparison tree described in [46], with the exception

that here the height represents the number of t-moves instead of the number of comparisons

made. Therefore we will not repeat the same kinds of arguments and give directly the

following result. We are interested in finding the t-move tree that minimizes the maximum

number of t-moves made (the best worst.case). As indicated in [461, this result turns out to be

the same in the average case. This value, which we call H, is equal to the minimum height of

the t-move tree. We have,

n! < (st)H, or

H > [ log nl / (t log s)].

Using Stirling's approximation for [ log nf l, we have

H > rn log n/(t log s) + lower order terms], and hence

H = 1(n log n/(t log s)).

C

Primary memory

(n)

Saotng devic
(a)

Figure 5-3: Interpretation of the model.

The model can be viewed as representing a sorting device of size s, attached to a memory

of size at least n, with an I/0 bandwidth between the two capable of storing t numbers and
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retrieving t numbers in a unit time (Figure 5-3). A more detailed interpretation of the

parameter t will be given in Section 5.2.5.

It is interesting to note the difference between the results derived here and those by Hong

and Kung [37]. They use a pebble game model to establish I/O complexity results for the fast

Fourier transform, and several other problems such as matrix multiplication and odd-even

transposition sort. Elements in the special-purpose device are represented by pebbles of a

certain color. The number of pebbles characterizes the size of the device. An algorithm to

carry out a specific computational task is defined by a computational graph. Given a set of

rules that govern the placement and removal of pebbles of various colors on the graph, the

goal is to arrive at a terminal configuration from an initial one, with a minimum number of

application of certain rules. The initial and terminal configurations are coverings of certain

nodes of the computational graph with pebbles of certain colors. Their lower bound results

thus refer to a particular algorithm. We do not use a computational graph to characterize any

particular algorithm. Our results, based on information theoretic arguments, are established

for a class of algorithms. More specifically, the established lower bound results are for any

sorting algorithm based on the decision tree model.

5.2 Upper Bound Results

The special case of t = 1 is of particular importance, and will be considered next. We

present a sorting algorithm whose running time is of complexity e(n log n/log s). It is optimal

since I/0 alone has been shown to be Q(n log n/log s).

5.2.1 Straight '4ultlway Merge Sort

Consider the problem of sorting n numbers stored in main memory, by using a special-

purpose device of size s, with s < n. A straightforward solution is to use the sorting hardware

only to produce In/s] sorted lists (called runs), and then use a sequential straight 2-way

merge algorithm to combine the resulting runs. However, the speed-up may not be

substantial for n > s. We wish to obtain a speed-up independent of n. First we examine a

sequential s-way merge sort algorithm, where s input runs are combined into a single output
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run. The obvious way to merge s ascending runs is to examine the first element of each run

and select the smallest element. This element is output and the process is repeated. This can

be done with the aid of a heap of size s. The leading elements of s runs are used to form the

initial heap. Then the minimum at the root of the heap is output and replaced by the

successor element in its run. This process of replacing one value by another is called

replacement selection. An infinity value can be appended to the end of each input run, so

that merging will terminate gracefully (as suggested in [46]). In a sequential algorithm, after

the smallest element of the heap has been output and replaced by its successor, the heap

elements have to be rearranged and the next smallest element will be available after log s

steps. In the systolic solutions to be described, however, this takes only a constant time.

Thus we can intuitively expect a speed-up of O(log s). Let us first restate the decomposition

procedure.

Problem:

Using a special-purpose device of size s (s < n), sort n numbers in memory to produce one

ascending list.

Let q be an integer > 1 such that
sq-' < n sq, or rn/ = 1.

We have

(q-1) log s< log n _ q log s,

log n/log s:5 q < (log n/log s) + 1, and therefore

q = flog n/log s].

Solution:

Define P(n,r) as the problem of merging r runs totalling n numbers into a single run. On a

sorting device of size s, P(n,r) can be decomposed as first doing s-way merges on r runs to

produce rr/sl runs, and then solve P(n, rr/sl). Since P(n,1) requires no effort at all, the

original problem P(n,n) terminates when only one single run is produced.

Value q has a special meaning. It represents the number of passes required by the s-way
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merge sort algorithm to put n numbers into a single sorted list. Each pass starting with r runs

will end up with rr/sl runs. Therefore the number of passes needed to merge n initial "runs"

(each consisting of exactly one element) into a single run is

[log3 n] =- riog n/log s] = q.

5.2.2 The Linear Array Algorithm

A priority queue is a data structure where a collection of elements is maintained, with the

possible operations of insertion, deletion, and minimum extraction. A hardware version of a

systolic priority queue is described in (64]. It consists of a linear array of identical cells, each

of which holds one element of the collection, with the minimum at one end of the linear array.

The current smallest element will always be available in constant time, even though the

remainder of the priority queue is still being reorganized.

Define a basic cycle of the systolic device as the time in which an extract-

minimum/exchange step can be performed. We also assume that during a basic cycle two

memory accesses can be made. Furthermore, we assume that during one half of a basic

cycle data will flow into a cell of the systolic device, and during the other half data will flow

out.

Let Ts(n,r) be the time to do s-way merges on r runs totalling n numbers, and producing

[r/sl new runs. We assume that an infinity value is appended to the end of each initial run.

T,(n,r) can be viewed as the time to introduce the first elements of each of the r runs to the

systolic device, plus the time to perform a total of n extract-minimum/exchange steps. We

have

T,(n,r) = r + n basic cycles.

To produce an initial run during the first pass, s numbers can be first inserted into the

systolic device, and then the desired run is obtained by a sequence of extract-minimums.

Thus T,(n,n) is simply

T,(n,n) - 2 n basic cycles.

Let T(rr) be the time to solve P(n,r) (as defined in Section 5.2.1), that is, the time to merge r

runs totalling n numbers to form a single run. We hsve
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T(n,r) -T,(n,r) + T(n,rr/sb, and

T(n,1) =0.

Our problem is therefore to get T(n,n).

We will use the following lemma which can be proved by using techniques in [45].

Lemma:

If x is a real number and k a positive integer, then

rrxi/ki = [x/kI.

Theorem 2:

For the linear array algorithm, we have

T(n,n) :5 (n + 1) flog n/log s] + n s/(s - 1) basic cycles.

Proof:

T(n,n) = T,(n,n) + T(njrn/si)

=T,(n,n) + T,(n,[n/si) + T(n,[[n/si/sl)

=T 8(njn) + Tr(njn/si) + T(n,rn/S21)

=T,(n,n) + T,(n,Fn/si) + T,(njrn/S2i) + T(n,Fn/s~l)

=T,(n~n) + T,(nrn/si) + T,(njrn/S21) + ... + T 3(njn/t-11) +e T(nsn/s1),

where q flrog n/log si, and we know T(n,[n/s~]) = (n,i) =0.

Therefore, we have
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Tin,n) = T"iql T(n,rn/sll)

= "q=o ([n/s] + n)

Sn q + ~ 1i=O

<nq + =o(n/si + 1)

n q + n (1 + 1Is + 1I/s 2 + ..+ 1/S q l) + q

= (n + 1) q + n (1- 1/Sq)/( 1 -1/S)

<(n + 1)q + ns/(s- 1)

(n + 1) flog n/log s1 + n s/(s - 1) basic cycles.
0

5.2.3 The Systolic Tree Device

The systolic tree device has been described in Chapter 3. Consider a tree device with s 0-

nodes. We saw in Section 3.3.3 that if each A-node of odd and even levels alternately

executes the step: "Examine its own data and those of its two offspring, rearranging them if

necessary such that it will contain the minimum", then the bottom half (i.e., the tree formed by

the A-nodes) will become a heap-like structure after log(s) steps. Once the first elements of a

runs are inside the hardware heap, we replace the minimum at the root A-node by the

successor in its run, and this new element will be sifted up to its correct position. The next

smallest element will be available at the root A-node in constant time, though the remainder of

the heap is still being reorganized. A replacement selection step can thus be performed in

constant time.

There are two ways to construct an initial heap of size k (k < s). One is to insert the k

elements through the root O-node until they reach the 0-nodes, and then let the A-nodes

produce the desired heap. Another way is to insert the k elements through the root A-node.

In order to produce a balanced heap, the element to be inserted can be sent alternately to the

left and right offspring (see [141).
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5.2.4 The Tree Algorithm

Define basic cycle in the same way as in Section 5.2.2. Furthermore, we assume that two

tree levels can be traversed in a basic cycle.

Again, let Ts(n,r) be the time to do s-way merges on r runs totalling n numbers, and

producing [r/si new runs. Also, as before, assume that an infinity value is appended to the

end of each initial run. We use the first method as mentioned above to form an inital heap of

size s. That is, s elements are inserted through the root 0-node until they reach the 0-nodes,

and then the A-nodes will produce the desired heap. Ts(n,r) can be viewed as the time to

produce Et/s] initial heaps out of the first elements of each of the r runs, plus the time to

perform a total of n extract-minimum/exchange steps. Therefore we have,

T,(n,r) = r + r/s] log s + n basic cycles.

T,(n,n) is a special case of Ts(n,r) where we have n runs each with exactly one element.

However, the infinity values which replace the minimums need not be read from memory, as in

the general case. Instead this time can be used to input the s elements of the next "heap

formation" step. In this way we can reduce the number of basic cycles roughly by half.

Therefore,

T,(n,r) = r + rr/s] log s + n basic cycles, if r * n, and

T8(n,n) = n + En/s] log s basic cycles.

Theorem 3:

For the tree algorithm, we have

T(n,n) < n(log n/log s] + (1 + log s)/(s-1)) + Flog n/log sl(1 + log s) basic cycles.

Proof:

4.
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M T (n,n) + F. T-1(n,[n/sl)

- n + f/ log s + Eq- ([n/s'1 + [n/sj+ 1i1 logs + n)

= n + [n/si log s + (q-1) n + I ns] os ~= n

*nq .4 [ n/sal -I + log S Z. [nisi

= n q + (1 +I lgs) E:' 11rn/s] -1I basic cycles.

Now

~' rn/s] <':: (n/s') + 11

q+n (1/s + 1 /s2 + .. + 1 /Sq)

-q + n (1/s) (1 - 1 /sq) /(1 - 1/s)

=q +e (n - //5 l) / (s -1)

=q + n/(s -1).

Therefore, we finally have
T(n,n) :5n q + (1 + log s) (q + n/(s-1))

= nq + q(1 +. logs) + n(l + logs)/(s-1)

=n(q+(1 +logs)/(2-1)) +q(l +logs)

=n(rlog n/log si + (I + log s)/(s- 1)) + [log n/log sl (1 + log s) basic cycles.
E3

The tree algorithm can be improved slightly to give yet another version, as follows. As

mentioned earlier in Section 5.2.3, two methods can be used to produce an irntial heap. One

starts inserting the elements through the root O,-node; the other introduces the elements

directly through the root A-node, with the elements sent alternately to the left and right

offspring to balance the heap. We can use the first method to produce initial heaps in the first

pass and the latter one in subsequent passes. This will give ine following expressions for

T,(n,r).
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T,(n,r) = r + n basic cycles, if r * n, and

T,(n,n) = n + [n/si log s basic cycles.

Therefore, we can obtain

T(n,n) < (n + 1) [log n/log s1 + n s/(s - 1) basic cycles.

In relation to the previous tree algorithm, the improvement is only roughly n log s/s 2 basic

cycles, which is not significant. The original tree algorithm has the advantage of allowing the

handling of long sort keys by lexicographic sort, as describe in 3.3.3.1. The new tree version

will thus be discarded.

5.2.5 A More General Interpretation of the Parameter t

We now give a more general way of interpreting the parameter t. The systolic device is

designed in such a way that it will repeatedly carry out a sequence of computations, which we

call a basic computation cyc!e. In the case of sorting, a basic computation cycle can be the

insertion of a newly read number into the systolic device and the subsequent minimum

extraction. The duration of a basic computation cycle will be referred to as the basic

computation time. In carrying out a basic computation cycle, some quantities need to be

retrieved from main memory and some others stored. We use the term basic 1/0 cycle to refer

to the activity of performing these memory accesses including the address calculation by the

interface controller. We use basic I/0 time to denote the duration of a basic I/0 cycle.

Notice that if the communication path between the main memory and the special-purpose

hardware allows p memory accesses to be done in parallel, then p basic I/0 cycles can be

performed during a basic I/0 time. Similarly, if multiple systolic devices are used, then more

than one basic computation cycle can be done in one basic computation time. t will then

represent the number of basic I/0 cycles that must be done during one basic computation

time. That is,

t = p basic computation time / basic I/0 time.

Notice that the basic I/0 time depends on memory characteristics, as well as the ,,iterface

controller design. We should first try to minimize basic I/0 time. Then we try to design a

systolic cell so as to achieve a unitary ratio between basic computation time and basic I/0

time. (A more detailed discussion will be shown in Section 5.3.) A ratio less than unity means
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that the systolic device is needlessly fast. In case t > 1, we can employ t identical systolic

devices so as to balance I/0 and computation. In the case of sorting, we construct t systolic

linear arrays (or trees) each of size s/t, and use t (s/t)-way merge sort algorithms. An

example of t = 6 (with p = 3 and basic computation time / basic I/0 time = 2) is illustrated in

Figure 5-4.

I/0 Basic I/0 cycle output min + input new number

COMP Basic computation cycle = insert new number + extract min

COMP COMP COMF COMP

COMP COMP COMP COMP

COMP COMP COMP

COMP COMP COMP

COMP COMP COMP

Figure 5-4: An example of t = 6.

5.3 Considerations in the Design of the Interface Controller

A special-purpose device is typically attached to a host which provides the data to be

processed and to which computed results are returned. An interface controller coordinates

the data traffic between the host and the special-purpose device. As we have seen earlier, a

basic computation cycle is a sequence of computations repeatedly carried out by the special-

purpose device. The memory accesses needed in a basic computation cycle are cared out

in a basic I/0 cycle. There is a need to synchronize three closely related activities: the basic

computation cycle, the basic I/0 cycle, and the activity of the interface controller. For

example, before a memory access can be initiated, the interface controller needs to compute

its addres. which in turn may depend on the outcome of some step in a basic computation
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cycle. Similarly, a step in the basic computation cycle may have to wait for the conclusion of

some data item being retrieved. A hypothetical situation is illustrated in Figure 5-5 (a). The

ideal case is when no synchronization overheads are needed, as in Figure 5-5 (b).

basic computation cycle basic computation cycle

step 1 step 2 [tejjjj tep2

interface controller activity interface controller activity

address address adrs address

calcul. calcul. calcul. ac-I I c I
basic I/0 cycle basic I/0 cycle

memory mory memory memory

access access access access

(a) (b)

Figure 5-5: Synchronization overheads and an ideal situation.

Consider the sorting device described earlier. A basic computation cycle is the extraction

of a current minimum of the elements in the device and the subsequent replacement by its

successor element in the same run. Consider the tree algorithm where each heap is formed

by entering the component elements through the root 0-node. (The discussion that follows is

easily adaptable to the linear array algorithm.) With each square node containing the data

(Location, Key) where Key denotes the key on which sorting is being done and Location its

memory location, A-nodes of odd and even levels alternately execute the following step:

"Examine its own data and those of its two offspring, rearranging them if necessary such that

it will contain the minimum key".

An earlier sorting example is repeated in Figure 5-6 (a) through (d). Though only the key

values are shown, they are in fact accompanied by their corresponding locations. Assume

that the datapath between A-nodes (4 bits) is much narrower than the length of a key or

location (16 bits), and that some scheme of serial transmission is used. Let a unit of time be

the time to transfer either a key or a location from a A-node to its offspring or parent node.

The time to do comparisons will be assumed to overlap with the data transfer and will not be
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8 7 6 5 4 3 2 1 8 00 6 00 4 o 2 00

00 00 00 00 7 5 3 1

00 00 00 00

(a) 00 (b) 00

8 00 6 00 4 00 2 00 8 00 00 00 4 00 00 00

7 0 3 00 7-- 6 3 *2

5 1 500

(C) 00 (d) 1

Figure 5-6: Groups of three nodes are compared against each other.

counted. To carry out the above mentioned step, four time units are required. During the first

two time units, the keys and locations of two offspring nodes are moved to the parent node

executing the step. In the two subsequent time units, the same information, possibly

exchanged with those of the parent node, flow back to the respective offspring nodes. Since

this step is to be carried out alternately by the odd-level and even-level nodes, a basic

computation cycle would take eight time units in a straightforward design. Actually we can do

better, since some of the activities can be overlapped.

becomes
a sink node a source node

(a) (b)

Figure 5-7: A sink node becomes a source node in the next time unit.

Each A-node will have storage for three pairs of keys and locations, corresponding to its

own and those of its two offspring. Denote by sink node a node into which data (keys and

locations) flow during two consecutive time units (see Figure 5-7 (a)). These data represent
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the current updated data of the sink node and its two offspring. A sink node will compare key

values and make appropriate local exchanges so that it will retain the minimum key and the

corresponding location. The data of its offspring may be temporarily obsolete. A node acting

as a sink node will become a source node during the two subsequent time units during which

data flow out of it to the two offspring and to its parent node (see Figure 5-7 (b)). In this way it

updates the data of the offspring and supplies a fresh copy of its own data to its parent.

During two time units all the odd-level nodes function as source nodes and the even-level

nodes as sink nodes. During the next two time units, the roles are reversed. A basic

computation cycle thus takes four units of time.

5.3.1 Difficulty of Obtaining a Harmonious Flow

We now show a problem that may arise due to the need for synchronization. Figure 5-8

depicts the root A-node and its two offspring. Denote by 0, the phase during which keys

move and by 02 the one in which locations move. The duration of each phase is a unit time.

In the figure, only the key values are shown explicitly.

During one basic computation cycle the root A-node acts once as a source node and once

as a sink node. The interface controller obtains the current minimum during phase 41 (during

which the root functions as a source node), and the corresponding location during phase 02.

With this location, it can calculate a new address (by adding some offset) and issue a memory

read command to read in the successor key in the same run. These two activities need to be

carried out serially and we thus see the difficulty of obtaining a harmonious flow. As soon as

the root node outputs the key and location, shown respectively in Figure 5-8 (e) and (f), it will

function as a source node and expects to input the next key value which is not yet available

(Figure 5-8 (g)).
eC

j]!
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7 5 3 1 7 3 00

7 3 7 3

'30 v 2 '1 00'0

(a) (b) (C) (d)

77 63 2 3 00

7 6 3 7 6 3
5 25

5 00

41 12 1q 2 ?

(e) (f) () (h)

Figure 5-8: The difficulty of obtaining a harmonious flow.

5.3.2 A Simple Solution

One straightforward solution is to use buffering and prefetch all the s successor keys so

that they become immediately available when needed. There is however a solution that does

not need extra storage. Consider the root A-node in Figure 5-8 (c) and (d) corresponding to

phases 0 1 and 0 2 , respectively. At the end of phase 4P2 both the minimum key and its location

are available at the root A-node. Therefore if the interface controller were inside the root

node instead of outside it, it could have started the input activities then, rather than two time

units later. This observation suggests the following solution, illustrated in Figure 5.9 (a)

through (h).

The interface controller has a storage for two buffers. The input buffer consists of input.key

and input.location (which are initialized to oo and dummy location, respectively), and the

output buffer consists of output.key and output.location. Let the basic computation cycle
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Figure 5-9: The interface controller acting as a new root node.

start with phase 4 1 in which the root A-node acts as a source node (Figure 5-9 (a)). During

01' the key value output from the device is compared against input.key and the smaller one

located. Denote by winner the smaller key and by loser the larger one. In the subsequent

phase 0 2t the location of the winner becomes available ar t:e used to compute a new

memory address to input the successor key of the winner. ,n ne 'xt half basic computation

cycle the root A-node will act as a sink node. During phase 01 the loser is fed back to the root

A-node. The corresponding location is sent back in 0)2* The actual memory read occurs

during these same phases 0 1 and 42. The newly input key will be available in input.key by the
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end of phase 0 2 , ready to start all over again in the next basic computation cycle. What we

have done is to obtain the second minimum key in the device while memory read is in

progress and carry out a comparison outside the device. This can be best be viewed as

treating the interface controller as a new root nod", whose right subtree is empty (or

equivalently, contains always oo keys), as illustrated in Figure 5-9 (a). Figure 5-10 shows the

timing diagrams of three activities. The ideal design is when the sum of 0 1 and 02 is equal to

the memory access time.

*1 022

Basic computation cycle

Outputs key from Outputs corresponding 
Inuscrrsodndevice location Inputs key to device loction

I 1 9I

Interface controller activity

Compares output key Computes address of Other activities Computes output
and stored.key winner's successor address

Basic I/O cycle

Write cycle to output winner of Read cycle to input next key

previous computation cycle into stored.key

Figure 5-10: Timing diagrams showing overlapping of three activities,

5.4 Numerical Speed-Up Values

With the derived expressions for T(n,n), we can now get an idea of some numerical speed-

up values. As we have just seen, the duration of a basic cycle is four time units or, using the

estimates of Section 4.2.5 1.6 ps. Since two memory accesses are to be made in one basic

cycle, this implies a memory cycle of 800 ns. We shall compute sorting times for various

values of s, the size of the systolic sorting device. The sorting times will be compared against

those of two fast sequential sorting algorithms, namely, Quicksort and Binsort. Quicksort is

one of the best sequential sorting algorithms, as far as expected sorting time is concerned

(34]. It is most highly regarded for practical applications. Binsort is a fast linear sorting

algorithm,,developed recently by Weide [92].

t-
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Consider the problem of sorting n numbers. Let

Ttree = Time taken by the tree algorithm (Section 5.2.4), and

Tarray = Time taken by the linear array algorithm (Section 5.2.2).

We repeat the expressions for Ttree and Tarray below.

Ttre =1.6 [nr log n/log s] + (1 + log s)/(s-1)) + rlog n/log s](1 + log s)] 1s, and

Tarry= 1.6 [(n + i) riog nllog sl + n s/(s -1)] js.

Let Stree and Sarray denote the respective speed-ups obtained in the tree and linear array

algorithms, with respect to the particular sequential sorting algorithm in question.

5.4.1 Quicksort

Quicksort has an average-case running time proportional to n log n, though in the worst-

case it is an O(n2 ) algorithm. We consider its average-case. Let

Tquck = Time Quicksort takes to sort n numbers.

On the DEC-KLIO, the running time for Quicksort (from [92]) is

Tquick 20 n log n/p.

We have Table 5-1, where we consider sizes s = 26 and 212 (or 64 and 4096).

Several comments on this table seem in order. At a first glance, one might wonder, for

example, how a 64-fold parallelism can give a speed-up of more than 64. This is possible

because we are not speeding up the same sequential algorithm by a s-processor device, but

rather a different algorithm is being used. In sequential sorting algorithms, because of

overheads of control, book-keeping and data movement, the constant hidden in the big-0

notation can be quite large. The power of the systolic solutions lies not only in the reduction

of the sequential sorting time by a factor of log s, but also in the resulting small constant. This

is so because of a much simpler control in the systolic solutions.

Both systolic algorithms have the same constant for the dominant term (1.6 n flog n/log sl

ps). Therefore as n goes to infinity, both speed-up values S., and Sarray approach
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8 n Tquick Ttree Stree Tarray Sarray

26 64 7.7 ms .12 ms 61 .21 ms 37

2 + 1 7.7 ms .24 ms 32 .31 ms 25,, II I I I
=4096 983 ms 13.9 ms 71 19.8 ms 50

64 212+ 1 983 ms 20.4 ms 48 26.3 ms 37'

2 262144 1 min 34 s 1.3s 72 1.1s 56

218+1 1 min 34s 1.79 55 2.1s 49

216771 2 h14 min 1rtn0 MII 731 fl 5s 6

212 =4096 983 ms 6.6 ms 149 13 ms 75

212+ 1 983ms 13.2 ms 75 19.7 ms 502=671 Ili I I
24 =16777216 2 h 14 min 53.8s 150 fmin 21s 100

2 +1 2h 14min lmin 21s 100 1 min 47s 75

=6.9 x010 52 days 92 150 122h 112

Table 5-1: Comparing systolic solutions with Ouicksort.

20 n log n/(1.6 n rog n/log si) = 12.5 log n/riog n/log s1Is.

giving the limits of 75 and 150, for s - 64 and 4096, respectively.

Recall that the number of passes to put n elements into one sorted list is given by

q rlog n/log s. For values of n in the ranges [1, s], (s+1, s2j, [s2 + 1, s, .... , the

corresponding values for q are 1, 2, 3,.... The table is organized according to the number of

passes needed. Thus, for example, for n in the range 65 to 4096, 2 passes are required. Note

that the most friendly values of n are exact powers of s, i.e., log n/log s is an integer.
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5.4.2 Blnsort

Binsort [921 is linear algorithm, if the input data satisfy certain conditions, with the running

time given by

Tbna180 n #3.

Table 5-2 compares the systolic solutions with Binsort.

8 n Tbin Tif.. Ste.. Tarray Sarray

26 = 64 11.5 ms .12 ms *92 .21lms 55

2 2+ 1 11.5 ms .24 ms 48 .31lms 37

2124096 737 ms 13.4711 5 1. In
21 2+ 1 77ms 20.4 ms W 26.3 ms 7

21s
2 262144 47.2s 1.3s 36 1.7s 28

218+1 47.2s 1.7s 27 2.1s 22

24 1 1 I I 15 1
2 = 16777216 3 min 20s 1 min 50s 27 -lv l 2

2 12is4096 737 ms 6.6 ms ill1 3 lms 56

212+ 1 737nms 13.2 ms 56 19.7ims; 37

2?4 1 *I I I mnl 37I
2 16777216 50 min 20s 53.8s86 1mn 1 3

4096
2 +1 - 50 min 20 l 1min 219 37 1lmin 47 s 28

.36! ~10 III
2=6.9 XlO .43 days 92h n35 1.22h 2

Table 5-2: Comparing systolic solutions with Binsort.

'Observe that even with a size of s 64, the systolic solutions can still beat Binsort.
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Because of complex book-keeping and control overheads, the constant of proportionality that

expresses the running time of Binsort is quite big. Since Binsort is linear, and the systolic

solutions are O(n log n/log s) algorithms, Binsort will win for sufficiently large values of n, with

S,,. and Sarray approaching

180 n/(1.6 n rlog n/log s]) = 112.5/[log n/log s].

Notice the successively decreasing values of Stree and Sarfay while n increases.

It is interesting to find the break-even point when Binsort will start to beat the systolic

solutions. For s = 64 and log s = 6, this will happen when

1.6 n log n/log s> 180 n, or

n > 2675 a 10o202.

It is also interesting to obtain the largest value of n that still allows, say, a 10-fold speed-up.

For this purpose, we make

16 n log n/log s = 180 n, or

n = 267 a 10".

Thus the systolic solutions can give substantial improvements for all practical ranges of the

number of elements to be sorted.

5.5 Concluding Remarks

We have presented and analyzed the linear array algorithm and the binary tree algorithm. A

comparison of the linear array and tree algorithms seems in order. The dominant term in the

sorting times is n log n/log s basic cycles in both cases. The difference in lower order terms

in the linear array algorithm and the tree algorithm is approximately (1 - log s/s) n basic

cycles. This difference arises because the tree-structured device possesses both an input

tree and an output tree, thereby allowing overlapping. of I/0 during the first pass. The tree

algorithm performs better in one pass out of a total of q = rlog n/log s] passes. Thus a

significant improvement is possible if q is very small, say one or two passes. As shown in

Tables 5-1 and 5-2, for a size s = 4096, only one or two passes are needed to cover all

practical ranges of n (say, upto a few million). For a device of such a size, the tree algorithm

may be the choice over the linear array.
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However, one important finding in this chapter is that, even with a size of only 64, the

speed-ups are already substantial over the sequential algorithms. We may thus choose to

build a sorting device of such a size, which is attractive for economic reasons. For small

values of s, the performance difference between the two systolic solutions is not significant in

a large portion of the practical range of n. Because of the simpler structure of the linear array,

it should probably be preferred.

-- 4
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Chapter 6

Applications

We have examined a special-purpose device capable of supporting the relational join,

search, sort, and some other basic operations. It can also maintain a collection of items with

the possible operations of insertion and deletion. In the following we examine some problems

that arise in design databases and some special databases such as chemical and geographic

databases. We show that solutions to such problems depend heavily on a small set of basic

operations.

First we examine two problems of detection of three-dimensional patterns in a large

structure. In the first problem the pattern and structure are composed of a number of points.

In the second one they are composed of line segments. We show that both problems can be

solved by using essentially sorting and the relational join. Three other problems to be

considered are detection of pairwise intersections of rectangles, a multidimensional search

problem, and the containment problem. In addition to sorting, the solution to the first problem

uses a data structure that maintains a dynamic collection of objects, with the operations of

insertion, deletion, and search. Search is also the main ingredient in the solution of the latter

two problems. While it is a widely known fact that sorting, is useful in many applications, we

emphasize that it is being used in some unexpected manner as some of the following

exampIes show.
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6.1 Detection of Three-Dimensional Patterns of Points

The problem of detecting three-dimensional patterns of a number of points, defined by their

Cartesian coordinates and a specified set of attribute values, in a similarly defined larger

structure is an important problem in many special databases. We will consider this problem in

the context of detection of all occurrences of a certain pattern of atoms in a large molecular

structure, an important database problem with applications in pharmacology, X-ray

crystallography, and chemical documentation [671.

6.1.1 Statement of the Problem

A molecular structure of n atoms is given by a fist of atomic coordinates si = (xi, Yi, 7), i =

0, 1, .... n-1. Each atom possesses a number of attributes such as atomic number, number

and types of bonds, etc. For each of the n atoms in the structure we are also given a set of

attributes. For simplicity we assume these to be represented by a single real number S , i = 0,

1, ..., n-.1 Similarly a pattern of m atoms is defined by the atomic coordinates pj = (xj, yJ, zi)

and their corresponding attribute values P, j = 0, 1, ..., m-1.

The problem is to determine all subsets of size m of the n atoms of the structure such that

these match the m atoms in the pattern, to within some prefixed threshold values. More

precisely, given non-negative threshold values el and e2, we want to determine all possible

sets of indices k[O, k[1], ..., k[m-1] such that forj = 0, 1, ..., m-i,

(i) k]j] - P< el and

(ii) Is' kU] - p)I _. 82$

where s'It ] = T(skow ), with T representing any Euclidean transformation consisting of

rotation, translation, and mirror image, or a finite composition of these.

The first condition indicates that the attributes ofthe m selected atoms match those of the

pattern to within threshold e1.  The second condition indicates that, after some

transformations, the positions of the m selected atoms of the structure coincide with those of

the pattern to within threshold e2'

.... , ._ =A
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An extension to this problem is to include also scale in the set of allowable Euclidean

transformations. This will be discussed in Section 6.2 in the context of three-dimensional

shape matching.

6.1.2 Description of a Previous Work

The above problem has been considered in [67]. An algorithm has been proposed to report

all occurrences of the pattern in the structure. If no complete matches are found, it reports

the maximal subset for which a match enxists. The algorithm first selects those atoms in the

structure which are eligible to match some atom in the pattern. Once the candidate set of

atoms is obtained, all its possible subsets of size m are then tested for congruence with the

pattern to within the specified threshold values. If all the n atoms in the structure are found to

be eligible, then the number of tests to be done will be (n ). The CPU time for this program to

detect matches of a 5-atom pattern in a structure of 100 atoms was reported to be more than

two hours. It is the latter phase of the algorithm, of generation and testing for congruence of

all possible combinations, that we are going to improve.

6.1.3 Summary of New Complexity Results and Assumptions

The time complexity of the matching algorithms we shall describie depends on the

distribution of points in the pattern and in the structure. We present two improved sequential

algorithms whose worst-case time complexities are O(n2 log m) and O(n2), for any distribution

of points in the pattern and in the structure, given that assumptions 1 through 3 below are

satisfied. The running times of both algorithms are dictated mainly by the computation of

many join operations. In the second algorithm, the time complexity becomes

min{O(n2), O(n m3)), if the points in the pattern obey certain conditions to be defined later.

For a uniform distribution of pattern points, the time complexity will be at most O(m n). This

algorithm requires an O(n 2 log n) preprocessing of the structure which consists essentially of

the sorting of n sequences of n elements each. These algorithms are therefore nice

candidates to be solved by some special-purpose hardware capable of performing the join

and sorting operations.
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Let us now present a general framework that not only applies to this particular problem, but

also to other types of matching problems such as the 3-D shape matching problem to be

discussed later. The terms atom and point are used interchangeably. We use P and S to

denote the pattern and the structure, respectively. We make the following general

assumptions.

GI. There exists a point j. in the pattern P that, together with two of its "neighbors" j,
and j2 and some other point 3' determine all the remaining m-1 points of P.

G2. We define "neighbor" in such a way that the number of "neighbors" of each
point of P or S is bounded by a constant independent of m or n.

G3. The position vectors s, i = 0, 1, ..., n-1 are all distinct and the same should hold
with respect to pi, i = 0, 1, ..., m-i. In other words, no two points in S (and also in
P) occupy the same position.

G4. We are interested only in detecting subsets of size m of S which match all the
points of P. If no complete matches are found, then we will not report the maximal
subset of the pattern for which a match exists.

The general idea is to try each of the n points of S as matching the point jo of P. Having

fixed one such point of S, the number of choices of the three other points of S that match Jj'

j2' and j3 will be bounded by a constant. Each matching process will consist of determining

which points of S match the remaining m-3 points of P. If each matching process can be

carried out in 0(n) time, the whole matching problem will then be solved in 0(n2) time.

For the present problem, we define "neighbor" as the nearest neighbor using the

Euciidean-distance metric. Assumptions G1 through G4 can be re-stated as follows.

1. There exists an atom Jo in the pattern, whose two nearest neighbors, J, and J2' and
some other atom 3 are such that the vectors

~ -'p.-% arnd pJ - p0
1jI-P 01 2 * 0' 13 0

are linearly independent. (In the two-dimensional case, we need an atom J.
whose nearest neighbor j, and some other atom j2 are such that p. - p and p
- p. are linearly independent.) 2 2

'0

2. The number of nearest neighbors of each point in P or S is bounded by a
constant.

3. Same as G3.

4. Same as G4.
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Consider the distances between each point of P or S and its nearest neighbor. Let dM"

and d,,, denote the maximum and minimum of such distances. A sufficient condition for

assumption 2 to hold in the 2-D case is

dam < c dmin

for some small constant c independent of m or n. This is easily proven as follows. Let # NN

denote the number of nearest neighbors of a point A under consideration. In the worst case,

all the nearest neighbors of A are spaced by dni n on a circumference at distance d,, x from

A. Then

' cords :_ perimeter of the circumference, or

# NN dmin S 2 v dmax , and therefore

# NN < 2 vr doa=/dnjn S 2 c v.

For the sake of simplicity in the presentation, we assume all the attribute values of the

atoms of the structure and of the pattern to be equal, thereby eliminating condition (i) for the

match. In a real situation, this condition of course should be taken into consideration as it will

cut down the number of candidate atoms for the match. Without loss of generality, we

assume the threshold value e2 to be equal to zero. We use si and p.. to denote the distance

between points i and j in the structure and pattern, respectively. (Recall that the bold-faced s,

and piV with a single subscript, are used to represent position vectors of atoms in the structure

and pattern, respectively.)

6.1.4 A Worst-Case O(n 2 log m) Algorithm

For ease of presentation and illustration, we will describe the algorithms for the two-

dimensional case. The complexity results to be derived are valid in the three-dimensional

case.

Consider a pattern of m points 0, 1, ..., m-I. Without loss of generality let 0 be a point

whose nearest neighbor 1 and some other point 2 are such that the vectors p1 - p. and P2 -

P0 are linearly independent. By assumption 1, such points exist. Point 0 will be the origin of a

new reference system in which the points of the pattern will be expressed in polar coordinates
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(see Figure 6-1). Angle 6. of a point I is measured with respect to the vector p1 - pO, and the

orientation is such that point 2 has an angle 02 < 180 ° . By definition we let 00 0.

2

P 1

J1

k

Figu re 6-1: Polar coordinates in the new reference system.

In this new reference system, for all points = 0, 1, ..., m-1 of the pattern compute their

polar coordinates p,= pol and . We thus construct Table 6-1 with m entries each consisting

of a point j and its new coordinates Pj and 0i .

i P i O1

S1 Pl 1

0 *

m-1 p -1  ni-1

Table 6-1: Polar coordinates for the m points of the pattern.

*1
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6.1.4.1 The Matching Process

Consider a structure of n points 0, 1, ..., n-1. For each point of the structure do the

following. Let i0 be the point under consideration. We will try to match it to point 0 of the

pattern.

Al. For i = 0, 1, ..., n.1 compute'the distances from structure point i to i0, that is,
compute p', = Siod

A2. Select those points in the structure which are at distance pol = p' from io. Let

A = {!Is, 0 , = P01.

By assumption 2, IAI or the size of this set is a constant. All the points of A will be
tried as matching point 1 of the pattern. Let i1 be one point of A. Having fixed i0
and i1 , we have at most two possible points i2 (one being reflection of the other
along i0 il) to match point 2 of the pattern such that

&0i2 = P02 and

112 = P12"
The number of possible choices for (i1, i2) is therefore at most 2 JAI, or a constant.
If A is empty or no i2 can be found, then we conclude io cannot be matched to

point 0 of the pattern and leave the loop. For each choice of i1 and i2 do the
following.

B1. Construct Table 6-2 where the n entries contain the atoms in the structure
and their polar coordinates in the reference system defined by the points io,

and i2, in a way similar to the one shown before.

I a;

i0 I1

n-1 P 1

Table 6-2: Polar coordinates for then points of the structure.

62. We now join Table 6.1 and Table 6-2 over the compound attribute (p, 8).
Note that because of assumption 3, this compound attribute constitutes a
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primary key which uniquely determines each row of Table 6-1 or 6-2. The
result of this join operation will give us a list of atoms of the structure that
can be matched to the atoms of the pattern.

In step B2, a complete match is found if the result table has exactly m rows. Otherwise the

match is an incomplete one. Notice that this method cannot report incomplete matches when

the missing atoms of the structure are those which would have been matched to points 0, 1, or

2 of the pattern.

A natural way to perform step B2 is to sort the entries of Table 6-1 lexicographically on (p,,

.). Binary search can then be used to test whether each (P'i' 8'%) of the structure is also in the

table, constructing a pair (i, j) to indicate the match in the affirmative case. The resulting

algorithm is thenO(n2 log M).

3 Pi1

2

0 -

Figu re 6-.2: Polar coordinates in the 3-dimensional case.

In the three-dimensional case, the only difference is that we use four points to define the

new reference system and that the tables have p, e, w columns. (See Figure 6-2.) Project

point j onto the plane (0; 1, 2) with a direction parallel to 03. Point 0 and this projection will

determine one side of the angles 9. and " For points on the line determined by 0 and 3, this

projection is defined to coincide with the point 1. The orientations of 8. and w. are such that

2 < 1800 and w < 1800. During the matching process, for a given io in the structure chosen

to match point 0 of the pattern, the number of choices for (i1 , i2, i3) matching (1, 2, 3) of the

pattern is still a constant, therefore the derived complexity results still apply.

j. _ _ _ _i
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6.1.5 A Worst-Case min{O(n2), O(n M3 )) Algorithm with Preprocessing

We now describe a sequential algorithm whose worst-case time complexity is 0(n2), for any

distribution of points in the pattern and in the structure, given that assumptions 1 through 3

are satisfied. If the pattern points form a single conglomerate, to be defined later on, then the

time complexity becomes min{O(n 2), 0(n m3)1. If the pattern points are distributed uniformly

in a sphere, then the algorithm will take at most O(m n) time. Before the matching process

can be started, an 0(n2 log n) preprocessing of the structure is required. This algorithm can

be useful if, for a given structure, a number of different patterns are to be tested. A nice

feature of this algorithm is that the matching process will be discontinued whenever it

discovers a match is not possible. In the previous algorithm, having chosen one point to

match point 0 of the pattern, we can conclude that a match is not possible if no points in the

structure can match point 1, or points 1 and 2 of the pattern. We would like to be able to carry

out the same reasoning process for each new point under consideration so that the resulting

algorithm will have a nice average-case behavior.

We start with the observation that in the two-dimensional case, given three non-collinear

points, any point can be determined by its distances to the three points. (In the three-

dimensional case, we need four points.) Assumption 1 guarantees the existence of such

points. As we will see, instead of the polar coordinates, we will define the points of the pattern

and the structure by their relative distances to three selected points. A discussion of the

practical usage of this algorithm is given in Section 6.1.5.4.

6.1.5.1 Structure Preprocessing

We compute all the pairwise distances among the n points of the structure and store the

results in a table which allows direct access to a distance value s given the points i and j. We

tlen sort each row of this table in increasing order of the distance values, giving Table 6-3.

An entry in row i of the this table contains the distance sik and the point k. The preprocessing

phase therefore Is 0(n2 log n).
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rowO0

/ -___ 
9 \row 1

\1/\0 row _________ ___

'-I \ \ ,/ok 0 8 8 10 10 13 13 13 13 13 13 15 15 S ...
31 i14, I i 44 34 13712 6 1040417 9 1433...

K ~~~~~~~row n-I__________ ____

Table 6-3: Each entry of row i contains a sorted distance value s and k.

6.1.5.2 Pattern Preprocessing

Let the m points of the pattern be 0, 1, ..., m-1. Again, without loss of generality, let 0 be a

point whose nearest neighbor 1 and some other point 2 are such that the vectors p, - Po and

P2 - po are linearly independent. All the points of the pattern will be determined by their

distances to points 0, 1, and 2. For each point j, we compute poll p,, and p2,, and sort them in

lexicographic order. The results are stored in Table 6-4.

Note that a number of points may be at a same distance from point 0 (and we say they all

belong to a same orbit centered at 0). However, at most two among such points can also

belong to an orbit centered at point 1. Each row of Table 6-4 also contains Levelk and

NumberSatellitesk (the latter being abbreviated in the table by #Sat) for k = 0, 1, and 2.

Levelo indicates the orbit level relative to point 0 and Levelk gives the orbit level (always

starting from 0) relative to point k of those atoms situated in consecutive rows with the same

value of (Levelo, .... Levelk.1). The orbit levels will be used to set up appropriate pointers to

the table, so that search can be postponed and resumed without backtracking.

NumberSatellitesk contains a count of the number of consecutive rows with the same value

for (Levelo, ..., Level ). Notice that in the two-dimensional case, NumberSatellites1 is at most 2

and this fact will be taken into consideration when we present the detailed algorithm in the

next section. Actually we will need only Levelo and NumberSatelliteso . In the three-
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PC, Level0  #Sato pli Level1  #Sati p2i Level 2  #Sat 2  J

0 0 1 10 0 1 25 0 1 0

10 1 1 0 0 1 20 0 1 1

13 2 4 11 0 1 14 0 1 10

13 2 4 12 1 1 25 0 1 6

13 2 4 15 2 2 10 0 1 12

13 2 4 15 2 2 21 1 1 7

15 3 2 13 0 1 16 0 1 9

15 3 2 28 1 1 28 0 1 -14

19 4 1 28 0 1 32 0 1 23

21 5 7 12 0 1 14 0 1 4

21 5 7 15 1 2 12 0 1 13

21 5 7 15 1 2 30 1 1 8

21 5 7 28 2 1 13 0 1 11

21 5 7 32 3 1 16 0 1 15

21 5 7 37 4 2 17 0 1 16

21 5 7 37 4 2 23 1 1 3

28 6 1 2D 0 1 0 0 1 2

Table 6-4: Distances to three selected points sorted lexicographically.

dimensional case, NumberSatellites 2 will be at most 2, and we will need Level., Level1 ,

NumberSatelliteso , and NumberSatelltes1 .

6.1.5.3 The Matching Process

Before we present the details of the matching process, let us first show the main ideas

behind it. Suppose we have already selected three points i0 , il, and i2 in the structure that

match points 0, 1, and 2 of the pattern, respectively. Then a point i in the structure willmatch

a point j in the pattern if

siI - Pol

81 1 Pil and

-

Thus if we had (8 l, s11it si2 ) sorted lexicographically, then we could do the matching by
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merely stepping through this sorted sequence and comparing with the entries of Table 6-4.

However, because the choice of the points i., i1 and i2 cannot be made before we know the

pattern, we cannot include this lexicographic sort in the preprocessing phase of the structure.

We will show that, even without a lexicographic sort of the points in the structure, we can still

carry out the matching process by stepping through rows io and i1 of Table 6.3.

We initialize a pointer (which we call StructurePointer) to the beginning of row io of Table 6-

3 and another (which we call PatternPointer) to the beginning of Table 6-4. We advance

StructurePointer along row io until the current distance value Si0 i is equal to the current

distance value po pointed to by PatternPointer. Denote this common.length by d. (If ao >

then we have a mismatch and the process can be discontinued.) The number of atoms in

subsequent entries of Table 6-4 which are also at distance d from point 0 is given by

NumberSatelliteso. Denote by B the set of atoms in the structure at distance d from io. The

size of B is at least 1 since point i is such a point. If NumberSatelliteso = 1 then we scan

through B and either one of its members matches atom j of the. pattern, in which case we

advance both PatternPointer and StructurePointer until they point to entries with distance

values different from d, or else we discontinue the matching process. If NumberSatellites0 is

greater than IBI then we conclude that a match is not possible and discontinue the process.

The processing becomes more complicated if NumberSatelliteso is greater than 1 but not

greater than 11. The decision of whether such atoms in the pattern can be matched by

members of B will be postponed. The current value of PatternPointer will be saved for future

use. We use ArrayPatternPointer[0:m-1] and ArrayLevel[O:n-1] and define some of their

elements as follows. We set ArrayPatternPointer[Levelo] to PatternPointer and we set

ArrayLevel[k] to Levelo for all k in B. (See Figure 6-3 for an example where, for readability,

points in the structure and pattern that match have the same name and points in rows ioand i1

that do not match any point in the pattern are represented by dark square dots.) Both

PatternPointer and StructurePointer will be advanced to their respective new entries with a

distance value different from d. Having thus scanned row io (or having reached the end of

Table 6-4), we then step through row i1. We need to consider only those entries (S, i) for

which ArrayLevel[i] has been defined in the previous pass. For each of such point I

ArrayPatternPointerArrayLevel[i]] will play the role of the current PatternPointer. As the
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Table 6-3

row
S..o 0 8 8 1010 13 1313 13 1313 1515 18.19 1921 21 21 2121 2121 21 25 25 .

1 1iu2 l 10 .7 9 14. 23.a13 4 8 11 31516.a 2..

row

0 7 10 11 11 11 1212 13 13 151515 1520 2828 2828 2830 32 3237 3737...

I j, o* .10 4 69.12 87 13 223.a1411 3 15 316.

ArrayLevel (01 111 (21 (31 (41 (51 (61 171 [81 (91 (10] [111 [121 (131 [141 1151 [161 . . . nl

I I 1 51 51 21 21 51 31 21 51 21 51 31 51 51.

Table 6-4

ArrayPattemPointer Po Level0  #Sato Pls. Leve 1 St ~ Lv' St

t0] 0 0 1 10 0 1 25 0 1__ 0

[4) 3 2 4 1 2 1

161 1 3 0 1 1

is-l __ __3 _ _ 2 _ _ _ _ _ 28______0 _1_ 1

19 Fiur 6 13 An exm0 s1wn t3e machn proess
Strctreoite ste1 thog ro 12, difrn elmet of 0ra~em e wil beusd

However1 th imotn fac is tha eac iniida 1r~te~itri onyadace 3
no2 bakakn is eve nedd Thi imora0 beavo gurnte thaacigpoest

beur liea in nn inapl thein wors case.gprces
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We now present the algorithm in more detail. We will use ArrayMatch[O:m.1] where

ArrayMatchj] will contain the structure atom that matches atom j of the pattern. A complete

match is obtained when ArrayMatch is totally defined. A test that this has occured should be

made whenever ArrayMatch is updated. Such tests will be omitted in the presentation that

follows, for the sake of readability. Recall that we also have a table which allows direct access

to a distance value si given two points i and j of the structure.

For each point in the structure do the following. (Let i0 be the point under consideration.

We will try to match it to point 0 of the pattern.)

Al. Consider row i0 of Table 6-3 and obtain a set A of points of the structure at
distance p0 1 from io . Each point of A will be tried as matching point 1 of the
pattern. As in the previous algorithm, the size of A is a constant and, for a given
point iI of this set, we can have at most two points i2 which match point 2 of the
pattern. This guarantees the number of choices of (i1 , i2) to be at most 2 IAI, or a
constant. If no i1 or i2 can be found, we discontinue the matching process.
(Whenever the matching process is to be discontinued because match is not
possible or a complete match has been found, we return to this point.) For each
new choice of i1 and i2 do the following.

B1. [Scanning row i0 of Table 6-3.] Initialize all elements of ArrayMatch,
ArrayLevel, and ArrayPatternPointer to null. Set StructurePointer to the
beginning of row i. of Table 6-3 and PatternPointer to the beginning of
Table 6-4. Let i and j denote the atoms in the current entries pointed to by
StructurePointer and PatternPointer, respectively. While both pointers are
within valid range do the following.

We have one of the following three cases.

Cl. s, < pog. Advance StructurePointer.

C2. s,, = POi = d.

There are three cases to consider where, in cases D2 and D3,
let B = { iok = d).

Dl. NumberSatelliteso = 1.

If &Y > p1l then match is not possible

elseif sil = pli and S12, = P21

then set ArrayMatchoj] to i and advance both
PatternPointer and StructurePointer

else advancv StructurePointer.
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D2. 1 <IBI<NumberSatellites o . Match is not possible.

D3. 1<NumberSatelliteso5BI. Set ArrayF-tternPointerLevelo] to
PatternPointer. Set ArrayLevel(k] to Level, for all k in
B. Advance PatternPointer (resp. StructurePointer) until
(resp. si ) > d or pointer out of valid range.

0

C3. a. > poi. Match is not possible.

B2. [PatternPointer or StructurePointer out of valid range.] If PatternPointer
within valid range then match is not possible.

B3. [Scanning row i1.] Initialize StructurePointer to the beginning of row i1. Let
i denote the atom in the current entry pointed to by StructurePointer. Let j
denote the atom in the current entry of Table 6-4 pointed to by
ArrayPatternPointer[ArrayLevel[i]], if ArrayLevel(i] is not null. We say that
ArrayPatternPointer[k] is valid if it is not null and points to a current entry
inside Table 6-4 with Levelo = k. While StructurePointer is within valid
range and there exists some k for which ArrayPatternPointer[k] is valid do
the following.

If ArrayLevel[i] = null or ArrayPatternPointer[ArrayLevel[i]] is not valid then
advance StructurePointer else we have one of three cases:

C1. sili ( p, Advance StructurePointer.

C2. s1i = p1i. There are four possibles cases:

Di. 52 < p21" Advance StructurePointer.

D2. s, = p2j.

Set ArrayMatch(j] to i. Advance
ArrayPatternPointer[ArrayLevel[i]]. If ArrayMatch[j] is not null
and ArrayPatternPointer[ArrayLevel[i]] is valid advance
ArrayPatternPointerArrayLevel[i]]. Advance StructurePointer.

D3. si2i > p2, and sa2 = P2k'

.where k is the atom in the next entry relative to
ArrayPattemPointer[ArrayLevel[i]]. Set ArrayMatch[k] to i. Do
not advance ArrayPatternPointer[ArrayLevel(i]] because atom j
still needs to be matched. Advance StructurePointer.

04. Si2' > P2i and s i 46 P'

where k is the atom in the next entry relative to
ArrayPatternPointer[ArrayLevel[i]]. Match is not possible.
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C3. Sii > p1 i. Match is not possible.

B4. [Row i has been processed or all elements of ArrayPatternPointer are
invalid.1 If there is still some valid element of ArrayPatternPointer then
mav'i is not possible.

In the three-dimensional case, the points will be expressed by their distances to four

selected points. The scanning of row io will be very similar to what we have above. During the

scanning of row i1, let i be the current entry pointed to by the current pattern pointer, as

determined by the current entry i of row i1. We have sioi = p OF Entry j may have a value of

NumberSatellites no longer bounded by 2. In that case, it siti = pl,, we again save the

current pattern pointer in a two-dimensional array indexed by Level0 and Level1 . The values

of the two indices will be stored in ArrayLevel[i]. (Other points k for which ArrayLevel[k] will

also receive the same content need not occur in a contiguous portion of row il). In addition to

rows i0 and i1 , row i2 may also have to be scanned. The processing of row i2 is similar to that

of row iI in the two-dimensional case. We will not elaborate the details here.

Structure ":" .

... ... .. ... ... .. Pattern (a) Pattern (b)

. d. .d

* . . ./*j.

Flgu re 6-4: Two different patterns and a structure with a cloud of points around i0

Let us analyze the time complexity of this algorithm in the three-dimensional case. Each

point in the structure is tried as matching point 0 of the pattern. Therefore each matching
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pass, from steps 81 through 84, is executed 0(n) times. The time to execute one matching

pass is, in the worst case, proportional to the time to step through the initial elements of rows

io, il, and i2' where the distance values are not greater than the diameter of the pattern. It is

instructive to look at the examples in Figure 6-4. Let d be the diameter of the pattern. In the

worst case, all the points inside the sphere with center at i0 and radius equal to d will be

examined in a matching pass. The number of such points depends on the length d and on the

distribution of the points. It is obviously less than n, which puts an upper bound of 0(n) on

one matching pass. Thus the algorithm takes at most 0(n 2) time. Let us now derive another

bound, in terms of m or the number of points in the pattern. Let us first give the definition of

what we mean by single conglomerate. Consider the distances between each of a collection

of points and its nearest neighbor. Let dmin and dmax denote the minimum and maximum of

such distances. Construct an undirected graph G from the collection of points as follows.

The vertices of graph G are the points of the collection. If the distance between points i and i

is less or equal to dmax, then connect the corresponding vertices in G with an edge. We say

that the collection of points forms a single conglomerate if

(i) dnx :5 c dmin , for some small constant c independent of n, and

(ii) the graph G as constructed above is connected.

(A graph is connected if there exists a path between any two of its vertices.) Assume that the

points of the pattern constitute a single conglomerate. The pattern will give a maximum

diameter of length 0(m), when its points are distributed in the vicinity of a straight ;ilie 'al r

pattern (a) of Figure 6-4). The maximum number of points in the structure that n.,4,i.,. be

examined is 0(m3), when there is a cluster of points around in. Hence the worst-case time

complexity for the proposed algorithm is min{O(n2), 0(n M 3)}. The points of pattern (b) in

Figure 6-4 are uniformly distributed in a sphere. For such a pattern, a matching pass will take

at most 0(m) time, thus giving a total time of at most 0(m n).

The matching process can be viewed as a number of join operations. Consider the set of

distance values of points of the pattern to point 0

0 = (df d = po0 for some point j of the pattern),

and let the elements of this set be
do < di < ... < dIl I .

We can partition Table 6-4 into smaller tables

I
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P = (p0 . Pli, P21  ) I P = dk), for k = 0, 1,. -1.

Therefore, having chosen (io, i1, i2), the matching process will consist of obtaining each

table

S = (Si, S il , S i2i, i) I Sioi = dk )

and joining it with table Pk over the compound attribute defined by the first three columns, for

k = 0, 1, ..., IDI-1. Having computed one join operation we will proceed to the next one only if

all the points in Pk have been matched to points in Sk* Otherwise the match under

consideration is impossible.

6.1.5.4 Practical Considerations

Suppose we are given a pattern with a large diameter. Consider points in the pattern which

are very far away from point 0 and its nearest neighbors 1 and 2. Such far away points, when

expressed in terms of their distances relative to 0, 1, 2, and 3, may be hard to distinguish one

from the other, since three of the distance values may be nearly equal. In this case, we may

prefer to use the first algorithm (or some variation of that algorithm, with the same kind of

preprocessing of the structure so as to achieve good average-case performance). For

patterns with small diameters, however, this does not pose a problem even though the

structure has a large diameter, because we really never go beyond the diameter o(. the pattern

in our matching process.

Concerning the implementation of the proposed algorithm, one immediate observation is

2that instead of a distance value d, we can use instead d2, thus saving us the time to extract

square roots. This observation also applies to the previous algorithm. Another observation is

that certain entries in the various tables may be chained in such a way that consecutive

entries with same distance values may be skipped in a single step.
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6.2 Three-Dimensional Shape Matching

Consider a three-dimensional rectilinear shape as any finite arrangement of straight line

segments (possibly with zero length) in a finite volume. In the following we consider

rectilinear shapes. Two shapes are similar if one of the two coincides with the other after

some Euclidean transformations that include translation, rotation, mirror image, and scale, or

a finite composition of these. One shape is a subshape of a second if every part of the first

shape is also a part of the second. Given three-dimensional rectilinear shapes p and s, we

wish to report all subshapes of s which are similar to p. An example is shown in Figure 6-5.

Shape s

Shapes p

Figure 6-5: Shape matching examples in 3-space.

One important application of this problem is in formal composition of component building
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systems. Shape grammars have been proposed for characterizing formal composition of

shapes [70, 86. 87], where the shape matching problem as stated above constitutes an

important step in the application of the production rules. In the two-dimensional case, this

problem is important for example in floor plan composition [88]. It may also be of some

interest in certain databases containing layouts of components to extract subparts of certain

shapes.

6.2.1 Relation to the Previous Problem and New Assumptions

The previous matching problem can be viewed as a special case of the three-dimensional

shape matching problem, when all the line segments have zero length, and scale is not

included in the set of allowable Euclidean transformations. Our goal here is to solve the

three-dimensional shape matching problem by modifying the previous algorithm without

however increasing its complexity. In order to be able to use portions of the previous

algorithm, we will use the same names as before. If we wish to report all subshapes of shape s

that are similar to shape p, we will denote shape s and p by the names of structure and

pattern, respectively. In addition to the Cartesian coordinates (and possibly some attribute

values) of the n points of the structure and m points of the pattern, we are also given the set of

points that are connected to each point. A necessary condition for a pair of points in the

structure to match a pair of points in the pattern that are connected is that they too be

connected. Notice that the pattern (0, 1, 2) in Figure 6-6 does not match (A,D,H) nor (E,A,D)

because DH and AE are not connected. However, in order to match two points in the pattern

that are not connected, it is not necessary for the matching points in the structure to be also

disconnected.

For this problem, we say that point A is a "neighbor" of point B if A and B are connected.

Thus assumptions Gi through G4 of Section 6.1.3 can be re-stated as follows.

1'. There exist points j0. Jl' j2, and J3 in the pattern, with point jo connected to points

J, and j2' such that

p. - p. P and p - P
il 1 0, P2 jo0 j3  jo

are linearly independent. (In the two-dimensional case. we need three points jo'
land J2 with Jo connected to jl' such that p. p and p p are linearly
independent.)
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Structure

B C
Pattern

1 2 E A

07
F G D H K

Figure 6-6: (0,1,2) matches (A,B,C), (D,E,F), (D,G,E), (E,G,F), (H,I,J), (HlK)

2'. The connectivity of any point in the pattern or in the structure is bounded by a
constant.

3'. Same as G3.

4'. Same as G4.

With an adequate choice of the points j., J' J2, and J3, it may be possible to represent all the

points in the pattern by their distances to these points, with no precision concerns as

mentioned earlier in Section 6.1.5.4.

Under these assumptions, we now present a modified algorithm for the three-dimensional

shape matching problem, with a worst-case time complexity of 0(n2) and preprocessing of

0(n 2 log n).

6.2.2 The Modified Algorithm
1"

We consider directly the three-dimensional case. Both the structure and the pattern will be

preprocessed in the same way as before. Without loss of generality, we again assume that

points 0, 1. 2, and 3 of the pattern have the property of the points j . , and J3, respectively,

of assumption 1'.
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There are three main differences in the matching process. The first difference is in step Al,

Section 6.1.5.3. For each point in the structure chosen as point io to match point 0 of the

pattern, all the points connected to io will be tried as matching point 1 of the pattern. By

assumption 2', the number of such points is a constant. For a given choice of (i., i1) the

number of points i2 that can match point 2 of the pattern is again a constant, since i2 must be

connected to io . Finally, for a given choice of (io , i1, i2 ), there are at most two points i3 eligible

to match point 3 of the pattern. This ensures that for each point io chosen to match point 0 of

the pattern, steps B1 through B4 will be executed, not necessarily to its entirety, a constant

number of times.

Let q denote the quotient between Sioil and p0 1. The second difference is that all distance

values in the pattern must first be multiplied by q before they can be used in comparisons with

distance values in the structure.

Finally, the third difference is that each time ArrayMatch is updated, say ArrayMatch[j] is to

be set to i, we have to test ArrayMatch[j p], where j are points in the pattern connected to

j. Either ArrayMatch[j p] is null or it should be equal to a point connected to i. This test will

ensure that the connectivity in the pattern is retained in the matching subshape in the

structure.

The above modifications do not alter the worst-case time complexity which is still O(n 2).

However, we are no longer able to give a bound in terms of m. The inclusion of scale in the set

of allowable Euclidean transformations makes the matching process more complex. If the

pattern consists entirely of isolated points, then for each point i0 in the structure chosen to

match point 0 of the pattern, the number of possible values of (i1, i2) that need to be tested for

match with points 1 and 2 of the pattern would no longer be a constant. Nevertheless, we

have managed to produce a modified algorithm for the three-dimensional shape matching

problem with the same complexity as the previous algorithm, where scale was not included.

We have traded off generality for performance. The complexity did not increase because of

the assumptions of bounded connectivity (assumption 2') and the existence of the four

reference points in the pattern with certain special characteristics (assumption 1').

Concerning the latter assumption, we observe that the only connectivity requirement is that
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point j. be connected to j, and J.. All the remaining points in the pattern may be isolated

points, with zero connectivity. For example, the matching problem (with scale included) as

illustrated in Figure 6-7 where all but three points in the pattern have zero connectivity,

satisfies assumptions 1' through 4' and therefore the modified algorithm is applicable. Notice

the shapes in this example are the same as in Figure 6-5, except that many lines have been

removed.

Structure

Patlmrs • •

e 67 0

Q0

Figure -7"Paterns¢osisingmosty o ponts
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6.3 Reporting Pairwise Intersections of n Rectangles

Consider the problem of detecting and reporting all occurrences of pairwise intersections

of a collection of n rectangles. One application is design-rule checking in a database

containing descriptions of VLSI layouts. The objects are usually the components on a chip or

their bounding boxes. The reported intersections can be used to pinpoint potential trouble

areas for further processing. Many design rules such as minimum width and clearance can

be performed by a combination of programs to expand/shrink rectangles, perform logical

operation, followed by an intersection reporter [33].

One important characteristic in the distribution of objects in such a database is that of

locality. Objects representing VLSI components tend to distribute themselves uniformly over

a chip's bounding box. As a result, one object will intersect a few neighbor objects. This

means that the naive algorithm of checking all O(n 2) pairs of objects for intersection is not

appropriate. Bentley, Haken, and Hon [8] confirm this assumption by studying a number of

specific Mead-Conway style designs. Furthermore, the authors give a priori arguments,

based on VLSI design philosophy, that justify the uniform distribution assumption. The aim of

making effective use of the silicon area implies that large blank spaces tend to be rare in good

designs. On the other hand, thenumber of objects that cluster around a given point is limited

because of the fixed number of layers available and the design practice of not overlapping

many objects on the same layer. The locality property has long been recognized and

exploited in earlier design rule checking systems such as [4] and [94]. A recent work [8)

presents a linear expected time algorithm to solve the rectangle intersection problem, with a

preprocessing step consisting of a sort of the rectangles. The analysis of the derived

algorithm is done under a formal probabilistic model.

We wifl briefly describe the main ideas of algorithms that take advantage of locality and

then show that they can be carried out very nicely with a special-purpose device capable of

maintaining a collection of objects with the possible operations of insertion, deletion, and

search. We then present a decomposition procedure that handles the case when the problem

size exceeds that of the special-purpose device. We will show that because of the locality

property. the device size can be quite small.
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6.3.1 Main Ideas

scan line scan line

1711

LLj

(a) (b)

Figure 6-8: Use of a Scan line to determine the active set.

Each rectangle has its left and right edges represented in a vertical-edge sequence where

they are sorted in increasing order by the x-coordinate. The vertical-edge sequence will

indicate the sequence of vertical edges touched by a vertical scan line sweeping the

rectangles from left to right, as illustrated in Figure 6-8 (a).
4

Let active set denote the set of rectangles kept in main memory and conflict set denote a

subset of the active set where search for intersection is performed. Starting from an empty

I
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active set and the scan line at the left edge of the chip bounding box, move the scan line

toward the right. Each time the scan line touches a left vertical edge of a new rectangle, the

corresponding object is entered to the active set. Each time a right vertical edge is detected,

the corresponding object is removed from the active set. For a given position of the scan line,

the active set will contain the rectangles intersecting the scan line. The above procedure can

be carried out by stepping through vertical-edge sequence and , -'ating the active set

accordingly.

A detailed study of the statistics of shapes of a sample of designs was made in [8].

Rectangles were classified into three categories: components (neither side greater than 10

X), wires (one side greater than 10 X and the other not greater than 6 X), and others. It was

found that components and wires constitute about 98% of the total (with roughly 73% of

components and 25% of wires). If d denotes the mean edge length of all the rectangles, then

about 99% of the rectangles have. the longer edge less than 20d. (d was found to be

approximately 7.6 X.) It was also found that n rectangles on a chip are distributed uniformly

over a bounding box which is a square of side d'n 112 . (d' was found to be 8 X, a little longer

than d.)

In the proposed algorithm the conflict set size is a constant. The algorithm needs O(n11 2 )

space for the storage of the active set and O(n) time for detecting and reporting the

intersections, excluding the initial sorting phase (an external sort). Notice that this method

can be extended to handle the detection of pairwise intersections of objects other than

rectangles. It suffices to consider the bounding boxes of the objects and, instead of reporting

an intersection of two bounding boxes, the algorithm checks if the two corresponding objects

in fact intersect.

6.3.2 A Partitioning Scheme

One straightforward way to use a special-purpose device is to use it to implement the active

set. The device will maintain the collection of rectangles that intersect the current position of

the scan line. The operations needed are insertion, deletion, and search. Recall that the size

of the active set is 0(n/ 2). The locality property suggests a natural decomposition procedure

to make this size constant.



PAGE 125 SECTION 6.3 REPORTING PAIRWISE INTERSECTIONS OF N RECTANGLES

First we repeat an argument used in [81 to prove the linearity of the algorithm. Under the

proposed probabilistic model, the n rectangles are squares of edge length d distributed

uniformly over a square of side d'nl" 2. The active set corresponds to the set of rectangles

intersected by the current scan line. The probability that a given rectangle intersects a given

scan line is d/(d'nl/ 2). The expected number of rectangles intersecting the scan line at any

given time is n times this probability or d n 1/2/d', which is roughly n1/ 2 . Divide the chip

bounding box (of side d' n1/2) into n1/ 2 horizontal partitions. Corresponding to each partition

one bin is created whose usage is as follows. If a new left edge intersects the current scan

line, its name is inserted into all bins corresponding to the partitions spanned by the rectangle

in question. Each rectangle in the active set is entered into two (or possibly one) bins. Since

rectangles are uniformly distributed, each bin contains approximately two rectangles in the

active set.

/2 1/2Let us assume that, instead of n'1 2 partitions, the chip bounding box is divided into n /k

partitions, for some integer k. (See Figure 6-8 (b).) Then,.by similar reasoning, each partition

will contain about k + 1 rectangles in the active set. This will suggest the decomposition

procedure. The height of one partition is

d' n1/2 / (n 1/ 2 /k) = d' k.

The value of k will be chosen such that the probability of a rectangle spanning three or more

partitions is nearly zero. Using the data from [8], which shows that 99% of the rectangles have

the longer edge less than 20d, we have

d' k> 20d, or k> 20 d/d' a 19.

boundary rectangle p Ipartrtionon
pawition 1 upper boundary rectangle

partition 2 /'' " oer boundary rectangle

p partition 2

Figure 6-9: A boundary rectangle.

.The scan line now sweeps each partition in turn. We need to resolve cases in which the

rectangles cross partition boundary lines and lie in more than one partition. Consider

1i
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rectangles that lie in two partitions. (See Figure 6-9.) Let us call these by the name of

boundary rectangles. Denote by upper boundary rectangle the part of the boundary

rectangle that lies above a boundary line and by lower boundary rectangle the one below the

boundary line. Since a boundary rectangle is split into two, we would like to avoid reporting

twice the intersection of two boundary rectangles crossing the same boundary line. This can

be achieved by not reporting intersection of two lower boundary rectangles.

The number of partition boundary lines is n /2/k - 1. Instead of n, the total number of

rectangles to be processed is

n + (n1/ 2 /k -1) n1/2 < n + n/k = (1 + 1/k) n.

With this decomposition procedure, instead of solving one large problem with n rectangles,

we now solve n" 2 /k subproblems each consisting of (1 + 1/k)n/(n/ 2 /k), or roughly k n1"2

rectangles. Each subproblem consists of the sorting of k n1/2 rectangles, and the scan line

now intersects about k rectangles.

To provide some safety margin, we can use a special-purpose device of size say 4 or 5

times k. For k = 20, a device of size around 100 should be appropriate. An overflow area can

be maintained in main memory in case the active set size exceeds that of the special-purpose

device. Search of rectangles that intersect in the overflow area will have to be done

sequentially. Occurrence of overflow should be very rare, so that the overall performance is

not affected.

One immediate advantage of the decomposition scheme is that the scrting phase involves a

much smaller quantity of rectangles. External sorting may not be necessary altogether.

Another advantage is that the number of rectangles intersected by the scan ine is now a

constant. This means less storage demand, as well as easier book-keeping operations. With

the decomposition procedure, the active set is equal to the conflict set, both of constant size.

This is a desirable feature in a design rule checking algorithm especially when the component

count on a chip continues to increase. (Another desirable feature is to take advantage of the

high-level information in hierarchical designs (10, 36, 93], a topic that falls outside the scope

of the present work.)
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6.4 A Multidimensional Search Problem

Consider the following multidimensional search problem. Given n lines in a k-dimensional

space, where at most a constant number of lines. intersect at a same point, answer if a given

query point lies on any of the lines and, in the affirmative case, identify all such lines. Many

variations of this problem are presented in [26], where the above problem in the two-

dimensional case is solved with a query time of O(log n) at the cost of an expensive

preprocessing.

One useful application of this problem or some of its variants, in the two-dimensional case,

is in geographic or cartographic databases. In [47] it is argued that, as an alternative to the

grid subdivision method, the polygonal subdivision method constitutes a better way of

representing geographic objects, though much more complicated data need to be stored and

processed. The polygonal subdivision representation has been employed in several

geographic databases for the processing Metropolitan maps. These systems treat roads as

line segments and a road network is expressed by a set of line segments plus some other

information. The condition of the problem is easily met since only a few (usually two or three)

roads intersect at the same point. A geographic database system has been implemented

under the relational model where the basic entity is a map which is a collection of points,

lines, line groups, and zones [12].

6.4.1 Related Work

Dobkin and Lipton [26] present an algorithm based on a generalized binary search which

gives a fast O(log n) query time in the two-dimensional case. Since lines in the plane are not

ordered in any obvious way, the proposed algorithm relies on an expensive preprocessing of

the n lines which is O(n3 log n) time and O(n3) space.

Lee and Preparata [61] consider the planar subdivision problem, a variant of this problem,

which can be solved in O(log m) time with preprocessing time O(m log m) where m can be

viewed as the number of intersections of the given line segments. Since O(n 2) intersections

are possible, the preprocessing can still be very expensive.

I.
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Another variant is when a batch of n known points are to be queried, as opposed to the on-

line problem where the query points are not known in advance. Shamos and Hoey [81]

present an O(n log n) algorithm which answers if there exists some query point that lies on the

given lines, without giving individual answers concerning which points lie on which lines.

6.4.2 A Hardware-assisted Solution

We consider the two-dimensional case and examine two problems. In the first one, a next

query point will be given only after the answer to the current query has been supplied. A

straightforward hardware-oriented solution is to use a tree device of capacity s > n to hold all

n given lines. The "preprocessing" now consists of loading the special-purpose device with

parameters that define the n line segments. A given query point is broadcast to all the leaves

where tests are made to see if it lies on any of the given lines. Since at most a constant

number of lines can intersect at a given point (assumption of the problem), this will result in an

O(Iog s) algorithm. This on-line problem does not seem to yield any decomposition procedure
in case s is less than n. Any partitioning mechanism would result in a trivial O(n) solution,

which is of course not interesting.

In the second problem a list of m query points are given one by one (in an on-line fashion)

and in return we have to supply a list of the corresponding answers. The case n < s can be

handled by first loading the n lines into the special-purpose device. Then each of the m query

points is broadcast to the leaves where comparisons take place. By means of pipelining and

given that one query point can lie on at most a constant number of lines, the total query time

will be O(m). In case multiple results need to be output the flow of data in the various kinds of

internal nodes should be disciplined, as described in Chapter 3.

If n ) s, then we can carry out the same procedure n/s times, each time loading s lines into

the device and processing the m query points. The total time will be O(m n/s). This

represents a speed up of O(s) with respect to the trivial O(m n) sequential algorithm, which we

would use if we do not want to invest i:, an expensive preprocessing.
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6.5 The Containment Problem

Consider the following containment problem. Given a simple polygon of n edges, answer if

each of a sequence of m query points lies inside the polygon. Fig'ire 6-10 (a) illustrates an

example where point A lies inside the given polygon while point B does not.

B.-

A

(a) (b)

Figu re 6-10: The 2.D containment problem and one possible extension.

The 2-D containment problem is important in computer graphics [7e]. Together with its 3-D

counterpart, it constitutes a fundamental problem in design databases for architectural or

mechanical design purposes. Kalay and Eastman [42] discuss shape operations such as

union, intersection, and difference, where the 2-D and 3-D containment tests constitute one

main part of their algorithm. The 2-D containment problem is also discussed in [7] and [82].

One possible generalization of this problem is to allow "holes" and "islands" in the

polygon. It can be used to describe the contour of objects in a planar layout (see Figure 6-10

(b)). In this exarple, the "holes" can be viewed as representing contours of objects. Given m

points, we want to know if each point lies inside a non-empty space, which may indicate a

spatial conflict. In the example, point A is inside an empty space while B and C are not.

One often used method is illustrated in Figure 6-11 (a) and (b). Point P is inside the polygon
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P,

A

P

P18
PP

(a) (b) (c.j

Figure 6-1 1: Counting the number of edges above the query point; problem with singularity.

if it is directly above an odd number of edges or, in other words, a vertical scan line with one

end tied to point P and the other to a weight intersects an odd number of edges. The

singularity problem is shown in Figure 6-11 (c) where the scan line intersects the end points of

some edges. At point A only one intersection should be counted, while at point B the count

should be either. none or two. Two solutions are mentioned in [76]. One solution is to

displace slightly each polygon vertex that lies exactly on a scan line. A more reliable way is to

use the topology of the polygon or the direction of successive edges of the polygon. If the

polygon boundary progresses monotonically toward the left or right, only one intersection

should be counted. On the other hand, if the direction changes from left to right or from right

to left, then two intersections should be recorded.

The containment problem resembles the problem just examined in the last section. Here

also, the problem involves a set of n line segments and a set of m points. A similar hardware-

oriented solution follows. The solution, however, calls for a more complex design of the A.

node which must also have some arithmetic capabilities. With a tree device capable of

holding all the n edges, we can simply broadcast the m points in a pipelined fashion to the

leaves where a test is made to verify if the edge lies below the point in question. If an output

one is generated for an affirmative answer, then the final answer can be obtained by adding

up the partial results in the internal nodes of the output tree. The problem can therefore be

solved in 0(m) time. after an initial 0(n) loading phase.

ti
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If s < n but s > m, then we can do the other way around by first loading the m points into the

device and broadcast the n edges to the leaves. Each leaf will keep track of the number of

intersections. This still takes 0(m) + 0(n) time. The case both n and m are greater than s can

be handled by repeating the above procedure m/s times. The total time will be 0(m n/s).

6.6 Performance Estimates

Consider the problem of detection of intersections of n rectangles (Section 6.3.2). Using

the instruction set and timing estimates of Section 4.2, we compare the performance, with and

without special-purpose hardware. Let Tsel and Tsystolic denote the time take by the

sequential algorithm executing on a conventional computer and by the systolic tree device,

respectively. We shall use k = 20 and s = 128. The two important phases are the initial

sorting phase and the intersection detection phase. Given n rectangles, the hardware-

oriented solution sorts n1/ 2 / k collections of 2 k n1/ 2 edges each. We now estimate the time

needed per rectangle in the second phase. For every edge of the sorted vertical-edge

sequence, the name of the corresponding rectangle, and the top and bottom y-values of the

edge are sent to the interface controller, together with an indication of the type of the edge

(whether left or right edge).

Scan line

T1 
Reg

0

R1 a member of the I FreePosition

active set 2 R81
3 T1

B1
4 B1

T2
2 R2 = a member leaving 5 P2

the active set 6 T2
iB2 7 82

(a) (b)

Figure 6-12: Nomenclature used and their respective assignment to
register positions.

I!J
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Depending on the type of the edge, the following sequence of instructions are issued.

(Refer to Figure 6-12 (a) and (b) for the nomenclature used, as well as the corresponding

register assignment.) If it is a left edge then the name of the rectangle R1, its top and bottom

y-values Ti and B1, are inserted into the active set. We use the insertion mechanism as

described earlier (Section 3.2.1.1). This is shown in Table 6-5.

Instruction Comment

Input 0 Input position of free node
FreePosition

Compare 1 See if selected
InputCond 2 Insert name of rectangle R1

Ri

InputCond 3 Insert top y-value TI

T1

InputCond 4 Insert bottom y-value B1

El

Table 6-5: Actions fired by a left edge.

If the edge in question is a right edge, then the instructions of Table 6-6 are sent to the 0-

nodes and executed. These correspond to the actions of detection of intersections and the

subsequent removal of the rectangle R2. Rectangle R2 intersects R1 if the following

condition holds:

-(T1 < T2 A T1 < B2 V B1 > T2 A 81 > B2) A R2 * R1.

The time spent for the processing of each rectangle is thus (6 Na + 2 Nb) cycles, where Na

and Nb denote the number of input instructions and other instructions, respectively. With Na

8 an Nb = 19, this gives 86 cycles, or approximately 8.6 ps per rectangle. For each

rectangle, four memory accesses are needed to fetch R1, T1, 81, and the edge type for the

left edge, and similar quantities for the right edge. Thus strictly speaking, the three

consecutive input instructions of Table 6-5 and Table 6-6 requires 3 memory cycles each. For

a memory..cycle of 800 ns, this would give approximately 9.2 js per rectangle. The previously

calculated value would stil apply with some kind of buffering mechanism, to prefetch memory
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Instruction Comment

Input 5 Input name of rectangle R2

R2

Input 6 Input top y.value T2

T2

Input 7 Input bottom y-value B2

B2

Load 3 1

Compare 6
CompareAnd 7 Flag 3 *- T1 < T2 A T1 < B2

LoadFlag 1

StoreFlag 3

Load 4

Compare 6
CompareAnd 7 Flag 4 -(Flag 3 V 81 > T2 A BI > B2)
LoadFlag 2

Or3 (Flag 4  R1 n R2)

Not 0

StoreFlag 4

Load 5

Compare 2
lnputond 1Restore node to free pool if R1 = R2Inputond I

NewFreePosition

Not0 -0I Flag 0 .- R1 * R2 A Ri n R2

Output 2

Output J Prepare to output R1 and R2

StoreFlag 7

Table 6-6: Actions fired by a right edge.

data while a right edge is being handled. Alternately, we can sometimes shuffle input

instructions with computations to reduce occurrence of consecutive input instructions.

Consider now the recently developed algorithm of [8]. We use an internal sorting method

(Quicksort) to sort the 2 n edges, assuming we have enough memory. For the second phase,

the reported time per rectangle is about 1.7 ms. We can now produce Table 6-7.
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S n Tseq Tsystolic Speed-Up

2048 983 ms 13.6 ms 72

8192 4.59s 54.2 ms 85

1st 131072 1 min 34 s 865 ms 109
phase 128

1048576 14 min 41 s 10.3s 85

4194304 1 h4 min 41.1 s 94

16777216 4 h 40 min 2 min 45 s 102

2nd 1.7 ms .009 ms 177

phase 128 per rectangle per rectangle

Table 6-7: Performance estimates for the rectangle intersection problem.

6.7 Concluding Remarks

The special-purpose device can be of considerable help to speed up a sequential algorithm

which depends heavily on sorting and other basic operations it supports. Obtaining such an

algorithm may not be a trivial task, as shown by the three-dimensional matching problems.

Also, it is crucial to start with an efficient sequential algorithm and try to speed it up by a

special-purpose device.

In Chapter 5. we have concluded that the size s of a hardware sorting device can be small.

The O(log s) upper bound on the speed-up does not encourage use of a large device. Here

we have found another example where this is true. The locality property in the distribution of

objects in certain design databases, together with an appropriate partitioning procedure,

allows a small device to aid in detecting pairwise intersections of these objects.
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Chapter 7

Conclusion

In this research we have investigated the feasibility of employing special-purpose VLSI

hardware to solve compute-bound database problems. The device we have proposed can be

viewed as a hardware implementation of a number of useful data structures where several

basic operations are supported. Such a device has been shown to be useful in a large class

of computationally intensive database problems. In addition to sorting, it can handle all the

basic relational operations as join, project, union, and intersection. Furthermore, we have

shown that a variety of database problems rely heavily on this same set of basic operations.

These include some costly three-dimensional pattern and shape detection problems. Though

presented with the purpose of illustrating the use of special-purpose hardware, solutions to

some of the problems are interesting in their own right.

Research efforts on the design of systolic algorithms have concentrated on the

achievement of high-performance through extensive use of parallelism and pipelining,

inherent in the structure of the proposed algorithms. A special-purpose device is, however,

one component among many other subsystems. It is time now to link the various subsystems

together and start investigating important system issues. Limited size of special-purpose

devices demands the partitioning of a large problem, which aggravates the I/O problem.

Unfortunately, an s-fold. parallelism does not necessarily imply an 0(s) speed-up in relation to

sequential algorithm. We have shown that any special-purpose sorting hardware of size s

can give at most O(log s) speed-up. The results on the expected performance improvements

of the proposed systolic solutions have been found to be encouraging. For practical ranges

of the quantity of data to be sorted, systolic devices of small sizes can beat even a recently

developed fast linear algorithm.
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The systolic architecture concept exploits the high component density promised by VLSI

technological advances. Davis, Denny, and Sutherland [24] note that "topology has a major

influence on whether or not a system can be implemented on a set of densely integrated VLSI

chips". Our results show that in fact this is possible with tree structures such as the linearized

tree and the binary tree. Not only can a subtree be compactly laid out on a component chip,

but the component chips can themselves be laid out on PC boards in an identical manner.

This result shows that a large tree can be packaged among chips in an economical way, with

a constant pin requirement independent of the size of the tree. In terms of chip area per

node, the custom design approach offers considerable savings with respect to the one-

microprocessor-per-node approach where more powerful general-purpose microprocessors

are used. In the custom design approach, the number of available pins limits the datapath

width between nodes. A narrow datapath implies some scheme of serial data transmission.

The performance of an individual node may compare unfavorably to that of a microprocessor.

High performance in the custom VLSI approach is achieved through intensive use of

parallelism. (Since the design costs are due mainly to the design of the basic cells, they are

independent of the size of the systolic device.) With higher densities, greater degree of

parallelism can be used, which in turn signifies higher performance. Therefore the systolic

approach is likely to be cost effective.

7.1 Main Contributions and Results

The main contributions and results are summarized below.

Many survey articles on database machine designs exist in the literature. They
usually treat each individual design independently, with no effort dedicated to
classify related works. A lot of seemingly different designs are often similar in
conception, the main difference being in implementation details. The proposed
taxonomy attempts to group the existing designs in a few categories. It facilitates
the appraisal of existing designs whose strong and weak points are identified.

* We have presented a novel space allocation scheme which takes full advantage
of pipelining and requires less logic than the previously proposed methods.
Among the basic database operations, we have designed systolic algorithms for
project, sort, join, union, etc. We have also discussed partitioning procedures for
handling large problems.

e We have emphasized the importance of viewing special-purpose hardware at an
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overall system level and stressed the crucial role played by I/O and problem
decomposition in the ultimate performance. The ideal special-purpose device
design is one that achieves a balance between computation and I/O. A mcdel to
study the I/O complexity for sorting with special-purpose hardware devices has
been proposed. A lower bound result on the I/O complexity for sorting n
numbers with any special-purpose hardware device of size s is shown to be
0(n log n/log s). An optimal design that achieves this bound has been presented.
Based on fairly low-level considerations, we have estimated the performance
improvements. We have also investigated the interface controller design for the
proposed sorting device, which allows the overlap of computation and I/O.

9 To evaluate the theme that a data structure supporting a few basic operations can
be useful in many different database problems, we have examined the following
problems all of which depend heavily on sort, join, and search operations.

o Detection of three-dimensional patterns of m points in a large structure of n
points (with application in chemical databases). We have presented two
sequential algorithms whose worst-case time complexities are, under some
mild assumptions, equal to 0(n2 log m) and 0(n2). With a uniform
distribution of points in the pattern, the time complexity is at most O(m n).
Compared with a previous result of order n,), this new result is interesting
in its own right.

o Three-dimensional shape matching (with application in CAD databases). In
addition to rotation, translation, and mirror image, scale is also allowed as a
valid Euclidean transformation. This problem is thus more general than the
previous one. The same algorithms for the previous problem are slightly
modified to yield solutions with a worst-case time complexity of 0(n2 ). This
again constitutes a self-contained result.

o Reporting intersection of rectangles with application in design databases.
By exploiting the locality property in the distribution of rectangles in certain
kinds of databases, we show that a relatively small special-purpose device
can be used to aid in solving this problem.

o Multidimensional searching with application in geographic and
cartographic databases. In order to obtain fast query time in this searching
problem, known sequential algorithms rely on preprocessing which is
expensive both in time and storage. A straightforward hardware-oriented
solution is shown.

o The containment problem with application in design databases. Here
again, the basic operation is that of search.

* We have proposed a new structure, called 'le linearized tree, that combines the
characteristics of the binary tree and the lI.aar array. A recursive procedure to
obtain its compact layout has been shown. The layout result can be applied to
the packaging of certain large tree structures among chips. These include the
binary tree and the linearized tree. The packaging method requires only one type
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of fully utilized chip, which is not pin-bound. The wire lengths connecting
component chips are shorter than those using the previously known layouts.

7.2 Further Work

The von Neumann bottleneck, associated with the communication path between the

memory and the central processor, is a well known problem. It may ultimately dictate the

overall performance of special-purpose chips. We feel that there is an urgent need for a

formal model and techniques to investigate the bandwidth requirements in such special-

purpose designs. Works such as [37] and this one, though each treating specific examples,

may constitute the first steps toward such models.

A superficial study of the interface system has been carried out. The success of a special-

purpose device depends heavily on the interface system. Questions as to what constitute the

requirements of the interface system, or where the main activities are to take place, are vital to

the success of the special-purpose approach and deserve further investigation.

We have concentrated on the packaging of certain tree structures into component chips. It

may be interesting to investigate similar packaging problems with other structures. The

linearized tree, whose layout result is used to solve the packaging problem of .certain tree

structures, is interesting in its own right. For example, Kung [54] has shown the

correspondence between classes of efficient systolic algorithms with a number of

communication topologies. It may be worthwhile to investigate the types of problems best

suited for the proposed linearized tree structure. Along a more theoretic direction, it may be

interesting to characterize the intrinsic improvement of the linearized tree structure over the

binary tree. One starting point can the work by Hong and Rosenberg [38], who prove that the

two structures are in fact equivalent under a certain cost measure. They consider embedding

one target structure in another host structure, with the cost related to the largest distance in

the host structure between images of adjacent vertices of the target structure. The measure

is thus topological in nature. Other cost measures of geometric nature may be considered.

Having..shown that a small systolic sorting device can offer substantial performance

improvements over fast sequential sorting algorithms, the next step may be to build such a

,I



PAGE 130 SECTION 7 2 FURTHER WORK

device. The linear array version probably should be used. However, there is still some

distance between the present results on sorting and a concrete implementation. Among the

studies yet to be made, we can cite the following. We have handled sorting of long keys by

lexicographic sort. We need yet to investigate the best way to handle keys of variable length.

Also, depending on-the format of the raw data to be sorted, some transformation may be

needed before they can be handled by the sorting device. If data transformation is to be

carried out by the interface controller as each datum is fed into the sorting device, we should

be very careful in the design so that the balance between 1/0 and computation is not

disturbed. The multiway merge sort algorithm is very general and can be used for any

distribution of the input data. If we have more knowledge on the data to be sorted (for

example, they are "nearly" sorted, or uniformly distributed in a certain range), it may be

worthwhile to develop other algorithms that would give a better average performance.

-f
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Appendix A
The Relational Data Model

We present a succinct introduction to the relational data model. A brief discussion of the

implementation of relational database systems on a von Neumann machine is included at the

end of this appendix. Details of the relational model can be found in [19, 21]. A survey of

relational database systems can be found in [44].

A.1 Relations

Given sets D1, D2. ...Dn (not necessarily distinct), R is a relation on these n sets if it is a set

of ordered n-tuples <d1 , d2. .. d,> such that d1 belongs to D1, d2 belongs to D2. ...dn belongs

to Dn. More concisely, R is a subset of the Cartesian product S1 x S x ... x Sn. Sets D1, D2...

Dn are the domains of R. The value n is the degree of R. The number of n-tuples (or simply

tuples) in a relation is the cardinality of the relation.

FLIGHT FLIGHT # ORIGIN DESTINATION PILOT PILOT NAME CITY
I (currently in)

212 LA Pitt Smith LA

214 LA Pitt Jones Lake Tahoe

218 LA Las Vegas Johnson Lake Tahoe

42 Pitt LA Davis LA

772 Las Vegas LA Adams Pitt
777 Las Vegas Lake Tahoe McDonald Pitt
778 Las Vegas Lake Tahoe

Figure 7.1 : The relations FLIGHT and PILOT.

Figure 7-1 illustrates two relations called FLIGHT and PILOT. As the example illustrates, it

is convenient to represent a relation as a table. Each row of the table represents a tuple of the
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relation. Rows are also referred to as records. Likewise, columns are also referred to as

attributes. Referring back to the original definition, the domains of a relation have an ordering

defined among them. If we were to rearrange the columns of the FLIGHT relation in some

different order, the resulting table would be a different relation, mathematically speaking.

However, if columns are referred to by their names and if the names are all distinct, this

restriction can be relaxed. Thus column order, just as row order, can be treated as

immaterial. It is important to notice the difference between domain, on the one hand, and

attributes which are drawn from the domain, on the other. An attribute represents the use of a

domain within a relation. In the relation FLIGHT, ORIGIN and DESTINATICN are attributes

drawn from the same domain, namely, a set of names of cities.

A.2 Keys

A primary key for a given relation is a single attribute or a combination of attributes whose

values uniquely identify the tuples of the relation. FLIGHT # in the relation FLIGHT is a

primary key. A relation may not possess a single-attribute primary key. However a relation is

a set and does not contain duplicate tuples. Every relation will have some combination of

attributes that have the unique identification property. The existence is guaranteed by the

fact that at least the combination of all attributes is such a combination. Therefore every

relation has a (possibly composite) primary key. It is usually assumed that the primary key is

non-redundant, in the sense that none of its constituent attributes is superfluous. In case a

relation possesses more than one primary key, we may arbitrarily choose one of the candidate

keys as the primary key for the relation. An attribute of relation R1 is a foreign key if it is not

the primary key of R1 but its values are values of the primaiy key of some relation R2 (R1 and

R2 not necessarily distinct).

A.3 Basic Relational Operations

For the union, intersection, and difference operations. the two relations concerned must be

union-compatible, i. e., they must be of the same degree and the respective attributes drawn

from the same domain. The relations being operated on will be referred to as argument

relations.
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Union

The union of two relations A and B is the set of all tuples belonging to either A or B, or both.

Intersection

The intersection of two relations A and B is the set of all tuples belonging to both A and B.

Difference

The difference between two relations A and B, in that order, is the set of all tuples

belonging to A and not to B.

Select

Select constructs a subset of tuples within a relation for which a specified predicate is

satisfied. The predicate is ex pressed as a Boolean combination of terms, each term being a

comparison that can be established as true or false for a given tuple by inspecting that tuple in

isolation.

Example

Select the tuples of relation FLIGHT where DESTINATION = "LA" or FLIGHT # > 600.

The result is illustrated in Figure 7-2.

FLIGHT # ORIGIN DESTINATION

42 Pitt LA

T72 Las Vegas LA

777 Las Vegas Lake Tahoe

778 Las Vegas Lake Tahoe

Figure 7.2: A selection example.

Project

Project app!ied to a relation over a specified combination of attributes gives a relation

derived from the argument relation with the non-specified attributes eliminated (and also

duplicate tuples eliminated).
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Example

Project the FLIGHT relation over ORIGIN and DESTINATION. The result is illustrated in

Figure 7-3.

ORIGIN DESTINATION

LA Pitt

LA Las Vegas

Pitt LA

Las Vegas LA

Las Vegas Lake Tahoe

Figure 7-3: A projection example.

Join

If two relations have a domain in common, they can be joined over that domain. The result

of the join is a relation in which each tuple is formed by concatenating two tuples, one from

each of the argument relations, such that the two tuples concerned have the same value in

the common domain.

Example

Join the relations FLIGHT and PILOT over the attribute ORIGIN of FLIGHT and the attribute

CITY of PILOT. The result is illustrated in Figure 7-4.

A.4 Implementation of Relational Database Systems

We now discuss the storage structures that have been used in implementing relational

database systerns. The discussion is based on a paper describing the history and evaluation

of system R [2], an important relational database system. The storage structures to be

discussed are. however, general in nature and not limited to this particular implementation.

One relational access method is called the XRM (Extended Relational Memory) developed

by R. A. Lorie [71]. Each tuple of an n-ary relation has a TID (tuple identifier) which can be

... ..-- ....1 p
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FLIGHT ORIGIN DESTIINIATIO PILOT NAM CITY
I currently in)

212 LA Pitt Smith LA

214 LA Pitt Smith LA

218 LA Las Vegas Smith LA

212 LA Pitt Davis LA
214 LA Pitt Davis LA
218 LA Las Vegas Davis LA

42 Pitt LA Adams Pitt

42 Pitt LA McDonald Pitt

Figure 7-4: A join example.

Domain # 1: Domain # 2:

PILOT NAME TID CITY

Davis 
L

Figure 7-5: XRM storage structure.

used to fetch the associated tuple in one page reference. Rather than the actual data values,

the tuple contains pointers to locations where the actual data items are stored (Figure 7.5

illustrates the representation of a tuple of the relation PILOT). Optionally, each domain may

have an inversion which associates a given domain value with the TID's of tuples in which that

value appears. In the example of Figure 7-5, if inversions exist on the domain CITY, then

provisions can be made to create a list of TID's of pilots current in LA. A query can be

processed by first manipulating the TID lists to obtain a list of TID's of tuples which satisfy the

query, before any tuples are actually fetched. An advantage of the XRM is that commonly

used values are represented only once. One serious drawback of XRM is that storing the

domains separately from the tuples causes many extra I/O's to be done in retrieving data

values. Because of this, the XRM was subsequently abandoned in a later implementation.

The access method in the newer implementation is called the RSS (Research Storage
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~Intermediate pages

F. TILeaf pages

Data pages

Figure 7-6: A B-tree index.

System). Rather than storing data values in separate domains, the RSS chose to store data

values in the records of the database.' Commonly used values are represented many times. It

was felt that this disadvantage was more than overcome by the advantage that all the data

values of a record can be fetched by a single I/O. Instead of the XRM inversions, the RSS

uses indexes which are associative access aids implemented in the form of B-trees [22]. Each

table in the database may have from zero indexes up to an index on each column. The B-tree

index is the principal access path used in system R. An example is illustrated in Figure 7-6.

Assuming a fan-out of 200 at each level of the tree, we can index a table of up to 8,000,000

records by a three-level index. Assuming that the root page remains in the main storage,

three I/O's will typically be required to begin an associative scan through a large table. In

addition to indexes, the RSS also implements links which are pointers stored with a record to

connect it to related records in the same table or in another table. Another common access

technique is hashing. Hashing was not used in Sy3tem R because it does not have the

convenient ordering property of a B-tree. Using indexes in preference to hashing, however,

causes 5 performance penalty for transactions which access only one or two records. For

example, to access a record in a large table using a three-level index, three 1/0s are needed.

If hashing is used, only one I/O may be sufficient, assuming no hash collisions occur.

j



PAGE 147 REFERENCES

References

[1] M. M. Astrahan et al.

System R: Relational Approach to Database zwement.
ACM Transactions on Database Systems 1(2):97-137, June, 1976.

[21 M. M. Astrahan et al.
A History and Evaluation of System R.

Technical Report RJ 2843, IBM Research Laboratory, San Jose, California, December,
1980.

[3] E.Babb.
Implementing a Relational Database by means of Specialized Hardware.
ACM Transactions on Database Systv.ms 4(1):1-29, March, 1979.

[4] H. S. Baird.
Fast Algorithms for LSI Artwork Analysis.
Design Automation and Fault-Tolerant Computing 2(2):179-209, May, 1978.

[5] J. Banerjee, D. K. Hsiao, and K. Kannan.
DBC. A Database Computer for Very Large Databases.
IEEE Transactions on Computers 28(6):414-429, June, 1979.

[6] J. Banerjee, D. K. Hsiao, and J. Menon.
The Clustering and Security Mechanisms of a Database Computer.
Technical Report OSU-CISRC-TR.79.2, The Ohio State University, Computer and

Information Science Research Center, April, 1979.

[7] J. L. Bentley and W. Carruthers.
Algorithms for Testing the Inclusion of Points in Polygons.
18th Allerton Conference.

[8] J. L. Bentley, D. Haken and R. W. Hon.
-" Statistics on VLSI designs.

Technical Report CMU.CS-80-1 11, Carnegie.Mellon University, Computer Science
Department, 1980.

S.



PAGE 148 REFEPENCES

[9] J. L. Bentley and H. T. Kung.
A Tree Machine for Searching Problems.
In Proceedings of 1979 International Conference on Parallel Processing, pages 257-

266. IEEE, August, 1979.
Also available as a CMU Computer Science Department technical report CMU-CS-79-

142, September, 1979.

[10] J. L. Bentley and T. Ottmann.
The Complexity of Manipulating Hierarchically Defined Sets of Rectangles.
Technical Report CMU-CS-81-109, Carnegie-Mellon University, Computer Science

Department, April, 1981.

[11] K. J. Berkling.
A Computing Machine Based on Tree Structures.
IEEE Transactions on Computers C-20(4):404-418, April, 1971.

[12] R. R. Berman and M. Stonebraker.
A System for the Manipulation and Display of Geographic Data.
Computer Graphics 11(2):186-191, Summer, 1977.

[13] M. W. Blasgen and K. P. Eswaran.
On the Evaluation of Queries in a Relational Database System.
Technical Report RJ 1745, IBM Research Laboratory, San Jose, California, April, 1976.

[14] S. A. Browning.
Computations on a Tree of Processors.
In Proc. Conference on Very Large Scale Integration: Archdacture, Design,

Fabrication, pages 453-478. Jaruay, '379.
Conference held at Caltech in Pasadena, Califo',ia.

[15] S. A. Browning.
The Tree Machine: A Highly Concurrent Computing Environment.
PhD thesis, Computer Science Department, California Institute of Technology,

January, 1980.

[161 A. K. Chandra and P. M. Merlin.
Optimal Implementation of Conjunctive Queries in Relational Data Bases.
In Proceedings of Ninth Annual ACM Symposium on Theoryof Computing, pages 77-

90. May, 1977.

[17] H. Chang,
On Bubble Memories and Relational Data Base.
In Proceedings 4th International Conference on Very Large Data Bases, pages 207.

229. 1978.

[18] T. C. Chen, V. W. Lum, and C. Tung.
The Rebound Sorter: An Efficient Sort Engine for Large Files.
In Proceedings 4th International Conference on Very Large Data Bases. pages 312.

318. September, 1978.



PAGE 149 REFERENCES

[19] E. F. Codd.
A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM 13(6):377-387, June, 1970.

[20] E.F. Codd.
Further Normalization of the Data Base Relational Model.
In Courant Computer Science Symposia, Vol. 6: Data Base Systems. Prentice-Hall,

1971.

[211 E.F. Codd.
Relational Completeness of Data Base Sublanguages.
In Courant Computer Science Symposia, Vol. 6: Data Base Systems. Prentice-Hall,

1972.

[22] D. Comer.
The Ubiquitous B-Tree.
ACM Computing Surveys 11 (2):121-137, June, 1979.

[23] G. F. Coulouris, J. M. Evans, and R. W, Mitchell.
Towards Content Addressing in Data Bases.
Computer Journal 15(2):95-98, May, 1972.

[24] A. L. Davis, W. M. Denny, and I. Sutherland.
A Characterization of Parallel Systems.
Technical Report UUCS-80-108, Department of Computer Science, University of Utah,

August, 1980.

[25) D. J. DeWitt.
DIRECT- A Multiprocessor Organization for Supporting Relational Database

Management Systems.
IEEE Transactions on Computers C-28(6):395-406, June, 1979.

[26] D. Dobkin and R. J. Lipton.
Multidimensional Searching Problems.
SIAM Journal of Computing 5(2):181-186, June, 1976.

[27] C. M. Eastman and R. Thornton.
A Report on the GLIDES2 Language Definition.
Technical Report, Institute of Physical Planning, Department of Architecture,

Carnegie-Mellon University, 1979.

[28] R. Fagin.
Multivalued Dependencies and a New Normal Form for Relational Databases.
ACM Transactions on Database Systems 2(3):262-278, September, 1977.

[29] R. Fagin.

On an Authorization Mechanism.
ACM Transactions on Database Systems 3(3):310-319, September, 1978.



PAGE 150 REFERENCES

[30] A. L. Fisher.
Systolic Algorithms for Running Order Statistics in Signal and Image Processing.
Technical Report, Carnegie-Mellon University, Computer Science Department, 1931.
In preparation.

[31] M. J. Foster and H. T. Kung.
The Design of Special-Purpose VLSI Chips.
Computer 13(1):26-40, January, 1980.
A condensed version appears in Conference Proceedings of the 7th Annual

Symposium on Computer Architecture, May 1980, pp. 300-307.

[32] M. J. Foster.
Tools for Generating VLSI Language Transducers: a Thesis Proposal.
VLSI Document V083, Carnegie-Mellon University, Computer Science Department,

April, 1981.

[33] D. Haken.
A Geometric Design Rule Checker.
VLSI Document V053, Carnegie-Mellon University, Computer Science Department,

June, 1980.

[34] C.A.R. Hoare.
Quicksort.
Comp. J. 5:10-15, 1962.

[35] L. A. Hollaar.
Specialized Merge Processor Networks for Combining Sorted Lists.
ACM Transactions on Database Systems 3(3):272-284, September, 1978.

[36] R. Hon.
The Hierarchical Analysis of VLSI Designs: a Thesis Proposal.
VLSI Document V073, Carnegie-Mellon University, Computer Science Department,

December, 1980.

[37] J. W. Hong and H. T. Kung.
I/O Complexity: The Red-Blue Pebble Game.
In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,

pages 326-333. May, 1981.
Also available as a CMU Computer Science Department technical report CMU-CS-81-

111, March, 1981.

[38] J, W. Hong and A. L. Rosenberg.
Graphs that are Similar to Binary Trees.
Technical Report RC 8402, IBM Thomas J. Watson Research Center, Yorktown

Heights, New York, July, 1980.

(39] D. K. Hsiao and M. J. Menon.
The Post Processing Functions of a Database Computer.
Technical Report OSU-CISRC-TR-79-6, Computer and Information Science Research

Center, The Ohio State University, July, 1979.



PAGE 151 REFERENCES

[40] D. K. Hsiao and M. J. Menon.
Parallel Record Sorting Methods for Hardware Realization.
Technical Report OSU-CISRC-TR-80-7, Computer and Information Science Research

Center, The Ohio State University, July, 1980.

[41] D. K. Hsiao and M. J. Menon.
Design and Analysis of Relational Join Operations of a Database Computer (DBC).
Technical Report OSU-CISRC-TR-80-8, Computer and Information Science Research

Center, The Ohio State University, September, 1980.

[42] Y. E. Kalay and C. M. Eastman.
Shape Operations - an Algorithm for Spatial-Set Manipulations of Solid Objects.
Technical Report, CAD - Graphic Laboratory, Institute of Building Sciences,

Department of Architecture, Carnegie-Mellon University, 1980.

[43] Won Kim, D. J. Kuck, and D. Gaiski.
A Bit-Serial/Tuple-Parallel Relational Query Processor.
Technical Report RJ 3194, IBM Research Laboratory, San Jose, California, July, 1981.

[44] Won Kim.
Relational Database Systems.
ACM Computing Surveys 11 (3):185-211, September, 1979.

(45] D. E. Knuth.
The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Addison-Wesley, Reading, Massachusetts, 1973.

[461 D.E. Knuth.
The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Massachusetts, 1973.

[47] I. Kobayashi.
Cartographic Databases.
In S. K. Chang and K. S. Fu (editors), Pictorial Information Systems, pages 322-350.

Springer-Verlag, 1980.

[48] P. M. Kogge.
Maximal Rate Pipelined Solutions to Recurrence Problems.
Unpublished report.

[491 H. T. Kung, L. J. Guibas, and C. D. Thompson.

Direct VLSI implementation of combinatorial algorithms.
In Proc. Conference on Very Large Scale Integration: Architecture, Design,

Fabrication, pages 509-525. California Institute of Technology, January, 1979.



PAGE 152 REFERENCES

[50] H. T. Kung and P. L. Lehman.
Systolic (VLSI) Arrays for Relational Database Operations.
In Proceedings of the ACM SIGMOD 1980 International Conference on Management of

Data, pages 105.116. ACM, May, 1980.
Conference held in Santa Monica, California. Also available as a Carnegie-Mellon

University Computer Science Department technical report CMU-CS-80-114, March,
1980.

[51] H. T. Kung and C. E. Leiserson.
Systolic Arrays (for VLSI).
In Duff, I. S. and Stewart, G. W. (editors), Sparse Matrix Proceedings 1978, pages 256-

282. SIAM, 1979.
A slightly different version appears in Introduction to VLSI Systems by C. A. Mead and

L. A. Conway, Addison-Wesley, 1980, Section 8.3.

[52] H. T. Kung and R. L. Picard.
Hardware Pipelines for Multi-Dimensional Convolution and Resampling.
Workshop on Computer Architecture for Pattern Analysis and Image Database

Management, November, 1981.

[53] H. T. Kung and S. W. Song.
A Systolic 2-D Convolution Chip.
Technical Report CMU-CS-81 -110, Carnegie-Mellon University, Computer Science

Department, March, 1981.
To appear in Non-Conventional Computers and Image Processing: Algorithms and

Programs, Leonard Uhr (editor), Academic Press, 1981.

[54] H.T. Kung.
Let's Design Algorithms for VLSI Systems.
In Proc. Conference on Very Large Scale Integration: Architecture, Design,

Fabrication, pages 65-90. January, 1979.
Conference held at Caltech in Pasadena, California. Invited paper.

[55] H. T. Kung.
Special-Purpose Devices for Signal and Image Processing: An Opportunity in VLSI.
In Proceedings of the SPIE, Vol. 241, Real-Time Signal Processing Iit, pages 76-84.

The Society of Photo-Optical Instrumentation Engineers, July, 1980.

[561 H.T. Kung.
Why Systolic Architecture.
To appear in Computer Magazine, 1981.

[57] G. M. E. Lafue.
Design Data Base and Data Base Design.
Technical Report Research Report No. 74, Institute of Physical Planning, Department

of Architecture, Carnegie-Mellon University, March, 1978.
This paper was presented at the CAD78 Conference held in Brighton, England, March

1978.

kls



PAGE 153 REFERENCES

[581 G. M. E. Lafue.
An Approach to Automatic Maintenance of Semantic Integrity in Large Design

Databases.
Technical Report, School of Urban and Public Affairs, Carnegie-Mellon University,

1979.
Paper presented at the IFIPS National Computer Conference, 1979.

[59] T. Lang, E. Nahouraii, K. Kasuga, and E. B. Fernandez.
An Architectural Extension for a Large Database System Incorporating a Processor for

Disk Search.
In Proceedings of the Third International Conference on Very Large Data Bases, pages

204-210. 1977.

[60] G. G. Langdon Jr.
A Note on Associative Processors for Database Management.
ACM Transactions on Database Systems 3(2):148-158, June, 1978.

(611 D. T. Lee and F. P. Preparata.
Location of a Point in a Planar Subdivision and its Applications.
SIAM Journal of Computing 6(3):594-606, September, 1977.

[62] P.L. Lehman.
The Theory and Design of Systolic Database Machines.
Thesis Proposal. Carnegie-Mellon University, Computer Science Department,

December, 1980.

[63] H. 0. Leilich, G. Stiene, and H. C. Zeidler.
A Search Processor for Data Base Management Systems.
In Proceeding 4th Conference on Very Large Data Bases, pages 280-287. September,

1978.

[64] C. E. Leiserson.
Systolic Priority Queues.
In Proc. Conference on Very Large Scale Integration: Architecture, Design,

Fabrication, pages 199-214. Caltech, January, 1979.
Also available as a CMU Computer Science Department technical report CMU-CS-79-

115, April, 1979.

[65] C. E. Leiserson.
Area-Efficient VLSI Computation.
PhD thesis, Carnegie-Mellon University, Computer Science Department, 1981.

[66] M. P, Lepselter.
X-Ray Lithography Breaks the Submicrometer Barrier.
IEEE Spectrum 18(5):26-29, May, 1981.

[67] A. M. Lesk.
Detection of Three-Dimensional Patterns of Atoms in Chemical Structures.
Communications of the ACM 22(4):219-224, April, 1979.

i"I



PAGE 154 REFERENCES

[68] C. S. Lin, D. C. P. Smith, and J. M. Smith.
The Design of a Rotating Associative Memory for Relational Database Applications.
ACM Transactions on Database Systems 1(1):53--65, March, 1976.

[69] C.S. Lin.
Sorting with Associative Secondary Storage Devices.
In Proceedings of the National Computer Conference, pages 691-695. 1977.

[70] Clive Liu.
Object Grammar - Language on the Generation of Masonry Design.
Technical Report, Institute of Building Sciences, Department of Architecture,

Carnegie-Mellon University, June, 1981.

[71] R.A. Lorie.
XRM - An Extended (N-ary) Relational Memory.
Technical Report G320-2096, IBM Scientific Center, Cambridge, Ma., January, 1974.

[72] G. A. Magb.
A Network of Microprocessors to Execute Reduction Languages, Part I.
International Journal of Computer and Information Sciences 8(5):349.385, March,

1979.

[73] G. A. Magb.
A cellular Computer Architecture for Functional Programming.
In COMPCON Spring 1980. IEEE, 1980.

[74] C. A. Mead and L. A. Conway.
Introduction to VLSI Systems.
Addison.Wesley, Reading, Massachusetts, 1980.

[75] C. Mead and M. Rem.
Cost and Performance of VLSI Computing Structures.
IEEE Journal of Solid State Circuits SC-14(2):?, April, 1979.

[761 W. M. Newman and R. F. Sproull.
Principles of Interactive Computer Graphics.
McGraw-Hill, 1979.

[77] M. Rem.
Interactions of Hardware and Software for Associative Processors.
Technical Report, California Institute of Technology, Division of Engineering and

Applied Science, June, 1978.

[78] A. L. Rosenberg, D. Wood, and Z. Gaill.
Storage Representations for Tree-Like Data Structures.
Mathematical Systems Theory 13(2): 105-130,1979.

[79] S. A. Schuster, H. B. Nguyen, E. A. Ozkarahan, and K. C. Smith.
RAP 2 . An Associative Processor for Databases and its Applications.
IEEE Transactions on Computers C-28(6):446-458, June, 1979.

Vi



PAGE 155 REFERENCES

[80] C. H. Sequin, A. M. Despain. and D. A. Patterson.
Communication in X-tree, a Modular Multiprocessor System.
In ACM Proceedings 1978 Annual Conference, pages 194-203. December, 1978.

[81] M. I. Shamos and D. Hoey.
Geometric Intersection Problems.
In Proceedings of the 17th Annual Symposium on Foundations of Computer Science,

pages 208-215. IEEE, October, 1976.

[82] M. I. Shamos.
Computational Geometry.
PhD thesis, Yale University, May, 1978.

[83] D. E. Shaw.
A Hierarchical Associative Architecture for the Parallel Evaluation of Relational

Algebraic Database Primitives.
Technical Report STAN-CS-79-778, Department of Computer Science, Stanford

University, October, 1979.

[84] D. L. Slotnick.
Logic per Track Devices.
In Tou, J. (editor), Advances in Computers, Vol. 10, pages 291-296. Academic Press,

New York, 1970.

[85] S. W. Song.
A Highly Concurrent Tree Machine for Database Applications.
In Proceedings of the 1980 International Conference on Parallel Processing, pages

259-268. IEEE, August, 1980.
Also available as a CMU technical report, VLSI Document V055, June, 1980.

[86] G. Stiny.
Pictorial and Formal Aspects of Shape and Shape Grammars.
PhD thesis, System Science Department, University of California, Los Angeles, 1975.

[87] G. Stiny.
Two Exercises in Formal Composition.
Environment and Planning B 3:187.210,1976.

[88] G. Stiny.
Ice-Ray: a note on the Generation of Chinese Lattice Designs.
Environment and Planning B 4:89-98,1977.

[89] H. S. Stone.
Parallel Processing with the Perfect Shuffle.
IEEE Transactions on Computers C-20(2):153-161, February, 1971.

[90] M. Stonebraker.
Implementation of Integrity Constraints and Views by Query Modification.
In Proceedings of the ACM SIGAOD 1975 International Conference on Management of

Data, pages 65-78. May, 1975.



PAGE 156 REFERENCES

[91] S. Y. W. Su, L. H. Nguyen, A. Emam, and G. L. Lipovski.
The Architectural Features and Implementation Techniques of the Multicell CASSM.
IEEE Transactions on Computers C-28(6):430-445, June, 1979.

[92] B. W. Weide.
Statistical Methods irn Algorithm Design and Analysis.
PhD thesis, Carnegie-Mellon University, Computer Science Department, August, 1978.

[93] T. Whitney.
Description of the Hierarchical Design Rule Filter.
Technical Report SSP File 4027, Computer Science Department, California Institute of

Technology, October, 1960.

[94] P. Wilcox, H. Rombeek, and D. M. Caughey.
Design Rule Verification Based on One Dimensional Scans.
In Proceedings of the Fifteenth Design Automation Conference, pages 285-289. June,

1978.

[951 W. Wilner.
Recursive Machines.
Technical Report, XEROX Paid Afto Research Center, January, 1978.

[96] M. M. Zloof.
Query by Example.
In Proceedings of the A.,FPS iatonal Computer Conference, pages 431-438. 1975.

~m~J



PAGE 157

Index

1-move 75

Activeset 123,124, 126
Analysis of the linear array algorithm 80
Analysis of the tree algorithm 83
Applications 99
Appraisal, database machine designs 11

logic-enhanced primary storage designs 25

logic-enhanced secondary s ,rage designs 20
Area estimates 67
Astrahan, M. M., et al. 7
Attributes 142
Authorization mechanism 7

B-trees 146
Balance between computation and I/O 9, 86
-Basic computation cycle 85, 86
Basic cycle 80
Basic I/0 cycle 85,86
Bentley, J. L. 24, 27, 55, 122
Berkling, K. J. 27
Binsort 95
Blasgen, M. W. 46, 73
Bottleneck, I/O 11, 12

von Neumann 11, 12
Boundary rectangles 126

lower 126
upper 126

Browning, S. A. 24, 27
Bubble memories 16

CAFS, Content Addressed File System 14
Cardinality 141
Cartographic databases 127
CASSM, Content Addressed Segment Sequential Memory 16
Chang, H. 16
Chemical databases 100
Complete-b:partite-graph connection 18
Compute-bound tasks 25
Conclusions 135
Conflict set 123, 124, 126
Conjunctive queries 6
Containment proolem 129
Content addressaoility 21. 34
Contributions 136
Cylinder 12



PAGE 158

Data flow, disciplining 36
Datapath 60

Davis, A. L. 136
DBC, Data Base Computer 19, 22

Decomposition schemes 28, 47

Degree 141
Deletion 32, 35, 70
Denny, W.M. 136
Design considerations 60
Design databases 6, 7, 129

Design rule checking 122, 126

Despain, A. M. 27
DeWitt, D. J. 18
Difference 143
DIRECT 18
Disciplining data flow 36
Distribution function 49
Distribution function, empirical 50
Dobkin, D. 127
Domains 141
Duplicates removal 27, 35, 43, 46, 48

Eastman, C. M. 129
Empirical distribution function 50

Eswaran. K. P. 46, 73
Euclidean transformations 100, 117

mirror image 100, 117
rotation 100, 117
scale 117,120
translation 100, 117

Evaluation 8
External evaluation 47, 48

Fast Fourier transform, I/O complexity of 74, 78

Fisher. A.L. 23
Fixed-head disks 12

Foreign key 142

Galif. Z 55
Geographic databases 127
GLIDE 7
Goa 6

Haken. 0. 122
Heap 40. 79,82
Hwarchcal associative architecture 22

Hierarchy. mem,)ry 28
Hooy. 0. 128
Holaw, L A. 27
Hon. R. W. 122
Hong, J. W. 74. 78. 138
Hi-ao. 0 K. 19

I/O bottleneck 11 12
I/O complexity for scrting 75
I/O complexity model 75
1/O complexity of the FFT 74, 78
I/O considerations 9. 74,86



PAGE 159

I/O-bound tasks 25
Implementation considerations 53
Indexes 146
Information theoretic arguments 76
INGRESS 7
Insertion 31, 69
Integrity, semantic 7
Interface controller 86
Interpretation of the I/O model 77, 85
Intersection 46, 143
Intersection of rectangles 122, 131
Inversions 145

Join 20, 22. 46, 71,.73, 144

Kalay, Y.E. 129
Key-disjoint partitions 48
Keys 142
Knuth, D. E. 55,73
Kung, H. T. 23, 24, 27, 55, 74, 78, 138

Labeling binary tree nodes 42
Lafue, G. M. E. 7
Lambda 67
Lang. T. 17
Langdon. G. G. Jr. 11
Latency time 12
Layout of the threaded tree 55
Lee, D.T. 127
Lehman, P. L. 24
Leilich, H. 0. 17
Leiserson. C. E. 23, 59
Lin, C.S. 20
Linearized trees 53
Links 146
Lipton. R. J. 127
Locality property 122
Logic-enhanced primary storage designs 8, 21
Logic-enhanced secondary storage designs 8,14
Logic-per-datum 21, 23. 24, 25
Logic-per-track 12, 15, 17, 20, 22, 51
Lower boundary rectangles 126

Mago, G. A. 27
Masonry designs 7
Matching, three-dimensional pattern 100
Matching, three-dimensional shape 117
Matrix multiplication 78
Mead-Conway designs 122
Mechanical tolerance problem 15
Member 45,46
Memory hierarchy 28
Methodology 8
Model, I/O complexity 75
Motivation 6
Moving-head disks 12
Multi-search-processor, dynamic allocation 17

static allocation 15
Multidimensional search 127



PAGE 160

N-tuples 141
Normal forms 7

Odd-even transposition sort 78
Order statistics 23
Organization of thesis 9

Packaging a binary tree 57
a large structure 54
a threaded tree 60

Partitioned-storage-units connection 19
Partitioning 74

by distribution function 49
by hashing 49

Partitioning strategies 28, 47
Pattern matching, three-dimensional 100
Patterson, D.A. 27
Performance estimates 67, 92, 131
Pin limitation 54
Pin requirements 67
Pipelining 29,36
Preparata, F. P. 127
Primary key 35, 142
Priority queues 23
Project 43, 48, 143

Queries, conjunctive 6
Query-by-Example 6
Quicksort 93

R. A. Lorie 144
RAP, Relational Associative Processor 16, 20

RARES 16
Records 141
Rectilinear shapes 117
Relational data model 141
Relations 141
Rem, M. 55
Remove-duplicat- 27, 35, 43, 46, 48
Replacement selection 79
Request/Acknowledge 62
Results of research work 136
Rosenberg, A. L. 55, 138
RSS, Research Storage System 145

Scan line 123,129
Search 20, 24, 39
Seek time 12
Select 20, 25, 28,39,143
Selection 70
Semantic integrity 7
Sequin, C.H. 27
Shamos, M. 1. 128
Shape grammars 117
Shape matching, three-dimensional 117
Shaw, 0. E. 22,48
Signaling convention 37
Single conglomerate 115

IL



PAGE 161

Sink nodes 88
Sorling 21, 22, 40, 46. 48. 73

analysis of the linear array algorithm 80
analysis of the tree algorithm 83
external 21,50
handling of long keys 42
1/0 complexity 75
internal 23, 73
lexicographic 42
lower bound results 76
special-purpose hardware for 73
speed-up results 92

upper bound results 78
using associative storage 21

Source nodes 89
Space allocation scheme 29
Speed-up 73, 74, 78
Straight multiway merge sort 78
Summary 9
Sutherland, I. 136
System configuration 28
System R 7,144
Systolic architecture 8, 23

T-move 75
T-move tree 76
Taxonomy of database machine designs 11
Threz J links 55
Threaded tree layout 55
Threaded trees 55
Three-dimensional, pattern matching 100
Three-dimensional, shape matching 117
Timing estimates 67
Transmission time 12
Tree machine, database operations on the

general description 28
related works 27

Tuples 141

Two-way straight merge sort 41

Uni-search-processor 14
Uniform distribution assumption 49,101,107,115, 122,124
Union 46, 143
Union-compatible 142
Upper boundary rectangles 126
Usage of views 7

Vertical-edge sequence 123, 131
View of special-purpose hardware usage 9G
Views, usage of 7
VLSI designs 35, 54, 122
Von Neumann bottleneck 11, 12, 138
Von Neumann machines 13

Weide, B. W. 48
Wilner, W. 27
Wood, D. 5

XRM, Extended Relational Memory 144



SECUlITY CLASSIPiCATION O -- IS VACE '4WeA Date -nRfe*d)

REPORT DOCUMENTATION PAGE READ !.NS RuCT:ONS
IBEFORE COM.PLE-TING FO.RM

1. F_ 2V ACCESSION .;k EC1PI ENT'*S C AlAL O ~ N UMBER

4. TITt.I (and Subtile) . TYPE OF REPORT & PERIOO COvERe

ON A HIGH'PERFORMANCE VLSI SOLUTION TO Interim
DATABASE PROBLEMS 6. PERFORMING ORG. REPORT NUMBEA

7. AliTHOR(e) S. CONTRACT OR GRANT NUMGER(*)

Siang Wun Song N00014-76-C-037
NCO014-8C-C-0236

S. PERFORMiNG ORGANIZATION NAME AND ADDRESS tO. PROGRAM EE-4 '. PPOJEZT. TASK

Carnegie-Mellon University AREA 6,wORK UhIT NUMBERS

Computer Science Department
Pittsburgh, PA. 15213

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
August 1981

IS. NUMBER OF PAGES

170

14. MONITORING AGENCY NAME ADRFSS(ji dillerent from Conrlling OIIice) iS. SECURITY CLASS. (of this report)

UNCLASSIFIE

ISa. DECLASSIFICATION/ DOWNGRADING
SCH EDULE

16. 0ISTRISUTION STATEMENT (of thia Report)

07. OISTRIBUTION STATEMENT (oI the abotrct sntered n Block 20, II different from oeport)

Approved for public release; distribution unlimited

10. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse #aoe if nceseoary md idenelly by bleck numbe)

20. ABSTRACT (Cenjnwae m re.aero ede If 0eaee4&.e an'qd i~efteity be 6106A merj

DD -~ 1473 EoTO, V I loves,s osOLETE

IDD , .SSIMCA SSIN ID
| N S| 2-0|4 1160| |$ CURiTY CLIASSIFICATION Ofr THIS 0 %49 fthoA o#@ Smeared)




